Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ -\,1;1 \right\}\) và thỏa

Câu hỏi số 255448:
Vận dụng

 Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ -\,1;1 \right\}\) và thỏa mãn \({f}'\left( x \right)=\frac{1}{{{x}^{2}}-1}.\) Biết \(f\left( -\,3 \right)+f\left( 3 \right)=0\) và \(f\left( -\frac{1}{2} \right)+f\left( \frac{1}{2} \right)=2.\) Tính \(T=f\left( -\,2 \right)+f\left( 0 \right)+f\left( 5 \right).\) 

Đáp án đúng là: C

Quảng cáo

Câu hỏi:255448
Phương pháp giải

 Tìm hàm số thông qua nguyên hàm, chia nhỏ trường hợp để xét các giá trị 

Giải chi tiết

Ta có \(f\left( x \right)=\int{{f}'\left( x \right)\,\text{d}x}=\int{\frac{\text{d}x}{{{x}^{2}}-1}}=\frac{1}{2}\ln \left| \frac{x-1}{x+1} \right|+C=\left\{ \begin{align} & \frac{1}{2}\ln \frac{x-1}{x+1}+{{C}_{1}}\,\,\,\,\,khi\,\,\,x>1 \\ & \frac{1}{2}\ln \frac{1-x}{x+1}+{{C}_{2}}\,\,\,\,\,khi\,\,\,-\,1<x<1 \\ & \frac{1}{2}\ln \frac{x-1}{x+1}+{{C}_{3}}\,\,\,\,\,khi\,\,\,x<-\,1 \\ \end{align} \right..\)

Suy ra \(f\left( -\,3 \right)+f\left( 3 \right)=0\Leftrightarrow \,\,\frac{1}{2}\ln 2+{{C}_{1}}+\frac{1}{2}\ln \frac{1}{2}+{{C}_{3}}=0\Leftrightarrow \,\,{{C}_{1}}+{{C}_{3}}=0.\) Và \(f\left( -\frac{1}{2} \right)+f\left( \frac{1}{2} \right)=2\Leftrightarrow \,\,\frac{1}{2}\ln 3+{{C}_{2}}+\frac{1}{2}\ln \frac{1}{3}+{{C}_{2}}=2\Leftrightarrow \,\,{{C}_{2}}=1.\)

Vậy \(T=f\left( -\,2 \right)+f\left( 0 \right)+f\left( 5 \right)=\frac{1}{2}\ln 3+{{C}_{3}}+{{C}_{2}}+\frac{1}{2}\ln \frac{2}{3}+{{C}_{1}}=\frac{1}{2}\ln 2+1.\)


Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com