Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( 1;2;1 \right),\,\,B\left( 3;-\,1;1

Câu hỏi số 255457:
Vận dụng cao

Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( 1;2;1 \right),\,\,B\left( 3;-\,1;1 \right),\,\,C\left( -\,1;-\,1;1 \right).\) Gọi \({{S}_{1}}\) là mặt cầu tâm \(A,\) bán kính bằng 2; \({{S}_{2}}\) và \({{S}_{3}}\) là hai mặt cầu có tâm lần lượt là \(B,\,\,C\) và bán kính đều bằng 1. Trong các mặt phẳng tiếp xúc với cả 3 mặt cầu \(\left( {{S}_{1}} \right),\,\,\left( {{S}_{2}} \right),\,\,\left( {{S}_{3}} \right)\) có bao nhiêu mặt phẳng vuông góc với mặt phẳng \(\left( Oyz \right)\) ?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:255457
Phương pháp giải

Xét vị trí tương đối của mặt phẳng, gọi phương trình tổng quát của mặt phẳng và tính toán dựa vào điều kiện tiếp xúc 

Giải chi tiết

Gọi phương trình mặt phẳng cần tìm là \(\left( P \right):ax+by+cz+d=0.\)

Vì \(d\left( {B;\left( P \right)} \right) = d\left( {C ;\left( P \right)} \right) = 1\)suy ra \(mp\,\,\left( P \right)\)//\(BC\) hoặc đi qua trung điểm của \(BC.\)

Mà \(\overrightarrow{BC}=\left( -\,4;0;0 \right)\) và \(mp\,\,\left( P \right)\) vuông góc với \(mp\,\,\left( Oyz \right)\)\(\Rightarrow \)\(mp\,\,\left( P \right)\)//\(BC\). Với \(mp\,\,\left( P \right)\)//\(BC\)\(\Rightarrow \,\,a=0\Rightarrow \,\,\left( P \right):by+cz+d=0\) suy ra \(d\left( A;\left( P \right) \right)=\frac{\left| 2b+c+d \right|}{\sqrt{{{b}^{2}}+{{c}^{2}}}}=2\)

Và \(d\left( B;\left( P \right) \right)=\frac{\left| -\,b+c+d \right|}{\sqrt{{{b}^{2}}+{{c}^{2}}}}=1\)\(\Rightarrow \)\(\left\{ \begin{align} & \left| 2b+c+d \right|=2\left| -\,b+c+d \right| \\ & \left| -\,b+c+d \right|=\sqrt{{{b}^{2}}+{{c}^{2}}} \\ \end{align} \right.\Leftrightarrow \) \(\left[ \begin{array}{l}
\left\{ \begin{array}{l}
4b = c + d\\
c + d = 0
\end{array} \right.\\
\left| { - \,b + c + d} \right| = \sqrt {{b^2} + {c^2}}
\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}
3\left| b \right| = \sqrt {{b^2} + {c^2}} \\
\left| b \right| = \sqrt {{b^2} + {c^2}}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
8{b^2} = {c^2} \Rightarrow c = \pm \,2\sqrt 2 \,b\\
c = 0 \Rightarrow d = 0
\end{array} \right.\) suy ra có ba mặt phẳng thỏa mãn. 

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com