Cho các số phức \({{z}_{1}}=-3i;\,\,{{z}_{2}}=4+i\) và z thỏa mãn \(\left| z-i \right|=2\). Biểu thức
Cho các số phức \({{z}_{1}}=-3i;\,\,{{z}_{2}}=4+i\) và z thỏa mãn \(\left| z-i \right|=2\). Biểu thức \(T=\left| z-{{z}_{1}} \right|+2\left| z-{{z}_{2}} \right|\) đạt giá trị nhỏ nhất khi \(z=a+bi\,\,\left( a;b\in R \right)\). Hiệu \(a-b\) bằng:
Đáp án đúng là: C
Quảng cáo
Biểu diễn trên mặt phẳng phức.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












