Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho mặt phẳng (P) đi qua gốc tọa độ và chứa đường thẳng \(d:\,\,{{x - 1} \over 2} = {{y + 3} \over

Câu hỏi số 259059:
Vận dụng

Cho mặt phẳng (P) đi qua gốc tọa độ và chứa đường thẳng \(d:\,\,{{x - 1} \over 2} = {{y + 3} \over 3} = {{z - 2} \over 1}\). Tính cosin góc tạo bởi \(\left( P \right)\) và \(\left( {Oxy} \right)\):

Đáp án đúng là: D

Quảng cáo

Câu hỏi:259059
Phương pháp giải

Lấy điểm M bất kì thuộc đường thẳng d, gọi \(\overrightarrow n \) là 1 VTPT của mặt phẳng \(\left( P \right)\) ta có \(\overrightarrow n  = \left[ {\overrightarrow {OM} ;\overrightarrow {{u_d}} } \right]\).

\(\overrightarrow k  = \left( {0;0;1} \right)\) là 1 VTPT của mặt phẳng \(\left( {Oxy} \right)\).

Khi đó \(\cos \left( {\left( P \right);\left( {Oxy} \right)} \right) = \left| {\cos \left( {\overrightarrow n ;\overrightarrow k } \right)} \right| = {{\left| {\overrightarrow n .\overrightarrow k } \right|} \over {\left| {\overrightarrow n } \right|.\left| {\overrightarrow k } \right|}}\).

Giải chi tiết

Lấy điểm \(M\left( {1; - 3;2} \right) \in d\), \(\overrightarrow {{u_d}}  = \left( {2;3;1} \right)\) là 1 VTCP của đường thẳng d.

Gọi \(\overrightarrow n \) là 1 VTPT của mặt phẳng \(\left( P \right)\) ta có \(\overrightarrow n  = \left[ {\overrightarrow {OM} ;\overrightarrow {{u_d}} } \right] = \left( { - 9;3;9} \right)\).

\(\overrightarrow k  = \left( {0;0;1} \right)\) là 1 VTPT của mặt phẳng \(\left( {Oxy} \right)\).

Khi đó ta có  \(\cos \left( {\left( P \right);\left( {Oxy} \right)} \right) = \left| {\cos \left( {\overrightarrow n ;\overrightarrow k } \right)} \right| = {{\left| {\overrightarrow n .\overrightarrow k } \right|} \over {\left| {\overrightarrow n } \right|.\left| {\overrightarrow k } \right|}} = {{\left| 9 \right|} \over {\sqrt {{{\left( { - 9} \right)}^2} + {3^2} + {9^2}} }} = {{3\sqrt {19} } \over {19}}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com