Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, cho hai điểm \(A(0; - 1;2),\,\,B(1;1;2)\) và đường thẳng \(d:\,\,\dfrac{{x + 1}}{1} =

Câu hỏi số 261090:
Vận dụng cao

Trong không gian Oxyz, cho hai điểm \(A(0; - 1;2),\,\,B(1;1;2)\) và đường thẳng \(d:\,\,\dfrac{{x + 1}}{1} = \dfrac{y}{1} = \dfrac{{z - 1}}{1}\). Biết điểm M(a;b;c) thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó, giá trị \(T = a + 2b + 3c\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:261090
Phương pháp giải

Do A, B cố định nên, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M đến đường thẳng AB là nhỏ nhất.

Mà M thuộc d nên khoảng cách \(d{(M;AB)_{\min }} = d(d;AB) = \) Độ dài đoạn vuông góc chung của d và AB.

Giải chi tiết

\(A(0; - 1;2),\,\,B(1;1;2) \Rightarrow \overrightarrow {AB} \left( {1;2;0} \right) \Rightarrow AB:\left\{ \begin{array}{l}x = {t_1}\\y =  - 1 + 2{t_1}\\z = 2\end{array} \right.\)

\(\left( d \right):\,\,\frac{{x + 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{1} \Leftrightarrow \left( d \right):\left\{ \begin{array}{l}x =  - 1 + t\\y = t\\z = 1 + t\end{array} \right.\)

Mà M thuộc d nên khoảng cách \(d{(M;AB)_{\min }} = d(d;AB) = \) Độ dài đoạn vuông góc chung của d và AB.

Gọi HK là đoạn vuông góc chung của AB và d \(\left( {H \in d,\,\,K \in AB} \right)\)

Vì \(H \in d,\,\,K \in AB\) nên, giả sử \(H\left( { - 1 + t;\,\,\,t\,\,;1 + t} \right),\,K\left( {{t_1}; - 1 + 2{t_1};2} \right) \Rightarrow \overrightarrow {HK}  = \left( {{t_1} - t + 1;2{t_1} - t - 1;1 - t} \right)\)

HK là đoạn vuông góc chung của AB và d\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {HK}  \bot \overrightarrow {{u_{AB}}} \\\overrightarrow {HK}  \bot \overrightarrow {{u_d}} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {{t_1} - t + 1} \right).1 + \left( {2{t_1} - t - 1} \right).2 + \left( {1 - t} \right)0 = 0\\\left( {{t_1} - t + 1} \right).1 + \left( {2{t_1} - t - 1} \right).1 + \left( {1 - t} \right).1 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}5{t_1} - 3t = 1\\3{t_1} - 3t =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 1\\t = \frac{4}{3}\end{array} \right. \Rightarrow H\left( {\frac{1}{3};\frac{4}{3};\frac{7}{3}} \right)\)

Diện tích tam giác MAB nhỏ nhất khi M(a;b;c) trùng\(H\left( {\frac{1}{3};\frac{4}{3};\frac{7}{3}} \right)\).

\( \Rightarrow a = \frac{1}{3},\,b = \frac{4}{3},\,c = \frac{7}{3} \Rightarrow T = \frac{1}{3} + 2.\frac{4}{3} + 3.\frac{7}{3} = 10\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com