Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình nào sau đây không phải là phương trình đường tròn?

Câu hỏi số 262389:
Nhận biết

Phương trình nào sau đây không phải là phương trình đường tròn?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:262389
Phương pháp giải

Dạng 1: Phương trình đường tròn (C) có tâm I(a;b) và bán kính R > 0 :   \({(x - a)^2} + {(y - b)^2} = {R^2}\)

Dạng 2: Phương trình tổng quát :  \({x^2} + {y^2} - 2ax - 2by + c = 0\) (*) có tâm I(a;b), bán kính \(R = \sqrt {{a^2} + {b^2} - c} \).

Điều kiện để (*) là phương trình của một đường tròn là:  \({a^2} + {b^2} - c > 0\).

Giải chi tiết

\({(x + 2)^2} + {y^2} = \sqrt 3 \), \({x^2} + {y^2} = 0,1\) là phương trình đường thẳng ở dạng 1.

\({x^2} + {y^2} + 2x + 2y + 10 = 0\) có \({a^2} + {b^2} - c = {( - 1)^2} + {( - 1)^2} - 10 =  - 8 < 0 \Rightarrow \) Đây không phải phương trình đường tròn.

\(3{x^2} + 3{y^2} - x = 0 \Leftrightarrow {x^2} + {y^2} - \frac{1}{3}x = 0\) có \({a^2} + {b^2} - c = {\left( { - \frac{1}{6}} \right)^2} + {0^2} - 0 = \frac{1}{{36}} > 0 \Rightarrow \)Đây là phương trình đường tròn.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com