Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Giá trị của \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{2x - 1}}{{\sqrt {{x^2} + 1}  - 1}}\)

Câu hỏi số 263348:
Nhận biết

 Giá trị của \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{2x - 1}}{{\sqrt {{x^2} + 1}  - 1}}\) bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:263348
Phương pháp giải

Bấm máy tính hoặc liên hợp đưa về hàm đồng bậc (chia) để tìm giới hạn

Giải chi tiết

Ta có \(\mathop {\lim }\limits_{x \to  - \,\infty } \frac{{2x - 1}}{{\sqrt {{x^2} + 1}  - 1}} = \mathop {\lim }\limits_{x \to  - \,\infty } \frac{{\left( {2x - 1} \right)\left( {\sqrt {{x^2} + 1}  + 1} \right)}}{{{x^2} + 1 - 1}} = \mathop {\lim }\limits_{x \to  - \,\infty } \frac{{\left( {2x - 1} \right)\left( {\sqrt {{x^2} + 1}  + 1} \right)}}{{{x^2}}}\)

\(\begin{array}{l} = \mathop {\lim }\limits_{x \to  - \,\infty } \frac{{x\left( {2 - \frac{1}{x}} \right)\left( {\left| x \right|\sqrt {1 + \frac{1}{{{x^2}}}}  + 1} \right)}}{{{x^2}}} = \mathop {\lim }\limits_{x \to  - \,\infty } \frac{{\left( {2 - \frac{1}{x}} \right)\left( { - \,x\sqrt {1 + \frac{1}{{{x^2}}}}  + 1} \right)}}{x}\\ = \mathop {\lim }\limits_{x \to  - \,\infty } \left( {2 - \frac{1}{x}} \right)\left( { - \,\sqrt {1 + \frac{1}{{{x^2}}}}  + \frac{1}{x}} \right) =  - \,2.\end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com