Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(\int\limits_{ - 1}^2 {f\left( x \right)dx}  = 2;\,\,\int\limits_{ - 1}^7 {f\left( t \right)dt}  = 9\). Giá

Câu hỏi số 263686:
Thông hiểu

Cho \(\int\limits_{ - 1}^2 {f\left( x \right)dx}  = 2;\,\,\int\limits_{ - 1}^7 {f\left( t \right)dt}  = 9\). Giá trị của \(\int\limits_2^7 {f\left( z \right)dz} \) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:263686
Phương pháp giải

\(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^c {f\left( x \right)dx}  + \int\limits_c^b {f\left( x \right)dx} ;\,\,\int\limits_{}^{} {f\left( x \right)dx}  = \int\limits_{}^{} {f\left( t \right)dt} \)

Giải chi tiết

\(\int\limits_2^7 {f\left( z \right)dz}  = \int\limits_2^7 {f\left( x \right)dx}  = \int\limits_2^{ - 1} {f\left( x \right)dx}  + \int\limits_{ - 1}^7 {f\left( x \right)dx}  =  - \int\limits_{ - 1}^2 {f\left( x \right)dx}  + \int\limits_{ - 1}^7 {f\left( t \right)dt}  =  - 2 + 9 = 7\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com