Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(K\left( {1;2;3} \right)\) và phương trình mặt phẳng \(\left( P \right):\,\,2x - y + 3 = 0\). Viết

Câu hỏi số 264488:
Vận dụng

Cho \(K\left( {1;2;3} \right)\) và phương trình mặt phẳng \(\left( P \right):\,\,2x - y + 3 = 0\). Viết phương trình mặt phẳng (Q) chứa OK và vuông góc với mặt phẳng (P).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:264488
Phương pháp giải

\({\overrightarrow n _{\left( Q \right)}} = \left[ {\overrightarrow {OK} ;{{\overrightarrow n }_{\left( P \right)}}} \right]\)

Giải chi tiết

\(\left\{ \begin{array}{l}\left( Q \right) \bot \left( P \right)\\\left( Q \right) \supset OK\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\overrightarrow n _{\left( Q \right)}} \bot {\overrightarrow n _{\left( P \right)}}\\{\overrightarrow n _{\left( Q \right)}} \bot \overrightarrow {OK} \end{array} \right. \Rightarrow {\overrightarrow n _{\left( Q \right)}} = \left[ {\overrightarrow {OK} ;{{\overrightarrow n }_{\left( P \right)}}} \right]\)

Ta có \(\overrightarrow {OK}  = \left( {1;2;3} \right);\,\,{\overrightarrow n _{\left( P \right)}} = \left( {2; - 1;0} \right) \Rightarrow {\overrightarrow n _{\left( Q \right)}} = \left[ {\overrightarrow {OK} ;{{\overrightarrow n }_{\left( P \right)}}} \right] = \left( {3;6; - 5} \right)\).

Vậy phương trình mặt phẳng \(\left( Q \right)\) là :  \(3x + 6y - 5z = 0\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com