Hai vòi nước cùng chảy vào một bể không có nước trong 6 giờ thì đầy bể. Nếu để riêng
Hai vòi nước cùng chảy vào một bể không có nước trong 6 giờ thì đầy bể. Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại va mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được \(\frac{2}{5}\) bể. Hỏi nếu chảy riêng thì mỗi vòi chảy đầy bể trong bao lâu?
Đáp án đúng là: D
Quảng cáo
+) Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là x và y (h) (ĐK: \(x,\ y>0\)).
+) Tính trong 1 giờ mỗi vào chảy được bao nhiêu phần bể.
+) Cả 2 vòi cùng chảy trong 6 giờ thì đầy bể nên mỗi giờ cả hai vòi cùng chảy được \(\frac{1}{6}\) bể, ta có phương trình (1).
+) Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại va mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được \(\frac{2}{5}\) bể nên ta có phương trình (2).
+) Giải hệ phương trình gồm hai phương trình (1) và (2).
Đáp án cần chọn là: D
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










