Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình trụ có hai đáy là hai hình tròn \(\left( O \right)\) và \(\left( {{O}'} \right)\), chiều cao

Câu hỏi số 265098:
Vận dụng

Cho hình trụ có hai đáy là hai hình tròn \(\left( O \right)\) và \(\left( {{O}'} \right)\), chiều cao \(2R\) và bán kính đáy \(R\). Một mặt phẳng \(\left( \alpha  \right)\) đi qua trung điểm của \(O{O}'\) và tạo với \(O{O}'\) một góc \(30{}^\circ \). Hỏi \(\left( \alpha \right)\) cắt đường tròn đáy theo một dây cung có độ dài bằng bao nhiêu?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:265098
Phương pháp giải

Dựng hình, xác định góc giữa mặt phẳng và đường thẳng để tìm độ dài dây cung

Giải chi tiết

Gọi \(M\) là trung điểm của \(O{O}'\). Gọi \(A\), \(B\) là giao điểm của mặt phẳng \(\left( \alpha  \right)\) và đường tròn \(\left( O \right)\) và \(H\) là hình chiếu của \(O\) trên \(AB\) \(\Rightarrow AB\bot \left( MHO \right)\).

Trong mặt phẳng \(\left( MHO \right)\) kẻ \(OK\bot MH\), \(\left( K\in MH \right)\) khi đó góc giữa \(O{O}'\) và mặt phẳng \(\left( \alpha  \right)\) là góc \(\widehat{OMK}=30{}^\circ \). Xét tam giác vuông \(MHO\) ta có \(HO=OM\tan 30{}^\circ \)\(=R\tan 30{}^\circ \)\(=\frac{R\sqrt{3}}{3}\).

Xét tam giác vuông \(AHO\) ta có \(AH=\sqrt{O{{A}^{2}}-O{{H}^{2}}}\)\(=\sqrt{{{R}^{2}}-\frac{{{R}^{2}}}{3}}\)\(=\frac{R\sqrt{2}}{\sqrt{3}}\).

Do \(H\) là trung điểm của \(AB\) nên \(AB=\frac{2R\sqrt{2}}{\sqrt{3}}\).

Chọn A

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com