Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Trong không gian với hệ trục tọa độ \(Oxyz\), cho tam giác \(ABC\) với: \(\overrightarrow{AB}=\left(

Câu hỏi số 265147:
Thông hiểu

 Trong không gian với hệ trục tọa độ \(Oxyz\), cho tam giác \(ABC\) với: \(\overrightarrow{AB}=\left( 1;\,-2;\,\text{2} \right)\); \(\overrightarrow{AC}=\left( 3;-4;\text{ 6} \right)\). Độ dài đường trung tuyến \(AM\) của tam giác \(ABC\) là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:265147
Phương pháp giải

Tìm tọa độ vectơ BC, tính độ dài BC và áp dụng công thưc đường trung tuyến tìm độ dài

Giải chi tiết

Ta có \(A{{B}^{2}}={{1}^{2}}+{{\left( -2 \right)}^{2}}+{{2}^{2}}=9\), \(A{{C}^{2}}={{3}^{2}}+{{\left( -4 \right)}^{2}}+{{6}^{2}}=61\), \(\overrightarrow{AC}.\overrightarrow{AB}=1.3+\left( -2 \right)\left( -4 \right)+2.6=23\).

Và \({{\overrightarrow{BC}}^{2}}={{\left( \overrightarrow{AC}-\overrightarrow{AB} \right)}^{2}}\)\(={{\overrightarrow{AC}}^{2}}+{{\overrightarrow{AB}}^{2}}-2.\overrightarrow{AC}.\overrightarrow{AB}\)\(=61+9-2.23=24\).

Áp dụng công thức đường trung tuyến ta có: \(A{{M}^{2}}=\frac{A{{B}^{2}}+A{{C}^{2}}}{2}-\frac{B{{C}^{2}}}{4}\)\(=\frac{9+61}{2}-\frac{24}{4}=29\).

Vậy \(AM=\sqrt{29}\).

Chọn C

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com