Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số  \(f\left( x \right) = \left\{ \begin{array}{l}\sin x\,\,\,\,\,\,\,\,\,\,\,khi\,\,\cos x \ge 0\\1 + \cos

Câu hỏi số 268182:
Vận dụng

Cho hàm số 

\(f\left( x \right) = \left\{ \begin{array}{l}
\sin x\,\,\,\,\,\,\,\,\,\,\,khi\,\,\cos x \ge 0\\
1 + \cos x\,\,\,\,khi\,\,\cos x < 0
\end{array} \right.\). Hỏi hàm số \(f\) có tất cả bao nhieu điểm gián đoạn trên khoảng \(\left( 0;2018 \right)\) ?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:268182
Phương pháp giải

Hàm số \(y=f\left( x \right)\) liên tục tại điểm \(x={{x}_{0}}\Leftrightarrow \underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f\left( x \right)=f\left( {{x}_{0}} \right)\)

Giải chi tiết

\(\begin{align}  & \cos x>0\Leftrightarrow x\in \left( -\frac{\pi }{2}+k2\pi ;\frac{\pi }{2}+k2\pi  \right) \\ & \cos x<0\Leftrightarrow x\in \left( \frac{\pi }{2}+k2\pi ;\frac{3\pi }{2}+k2\pi  \right) \\\end{align}\)

Do đó hàm số liên tục trên mỗi khoảng  \(\left( -\frac{\pi }{2}+k2\pi ;\frac{\pi }{2}+k2\pi  \right);\,\,\left( \frac{\pi }{2}+k2\pi ;\frac{3\pi }{2}+k2\pi  \right)\)

Ta xét tính liên tục của hàm số tại \(x=\frac{\pi }{2};\,\,x=\frac{3\pi }{2}\)  

Ta có \(\left\{ \begin{align}  & \underset{x\to {{\frac{\pi }{2}}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\frac{\pi }{2}}^{-}}}{\mathop{\lim }}\,\left( \sin x \right)=\sin \frac{\pi }{2}=1=f\left( \frac{\pi }{2} \right) \\ & \underset{x\to {{\frac{\pi }{2}}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\frac{\pi }{2}}^{+}}}{\mathop{\lim }}\,\left( 1+\cos x \right)=1+\cos \frac{\pi }{2}=1 \\\end{align} \right.\Rightarrow \underset{x\to {{\frac{\pi }{2}}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\frac{\pi }{2}}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( \frac{\pi }{2} \right)\Rightarrow \) Hàm số liên tục tại \(x=\frac{\pi }{2}\)

Ta có \(\left\{ \begin{align}  & \underset{x\to {{\frac{3\pi }{2}}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\frac{3\pi }{2}}^{+}}}{\mathop{\lim }}\,\left( \sin x \right)=\sin \frac{3\pi }{2}=-1=f\left( \frac{3\pi }{2} \right) \\ & \underset{x\to {{\frac{3\pi }{2}}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\frac{3\pi }{2}}^{-}}}{\mathop{\lim }}\,\left( 1+\cos x \right)=1+\cos \frac{3\pi }{2}=1 \\\end{align} \right.\Rightarrow \underset{x\to {{\frac{\pi }{2}}^{-}}}{\mathop{\lim }}\,f\left( x \right)\ne \underset{x\to {{\frac{\pi }{2}}^{+}}}{\mathop{\lim }}\,f\left( x \right)\Rightarrow \) Hàm số liên tục tại \(x=\frac{3\pi }{2}\)

Vậy tất cả các điểm gián đoạn của hàm số là \(x=\frac{3\pi }{2}+k2\pi \,\,\left( k\in Z \right)\)

\(x\in \left( 0;2018 \right)\Leftrightarrow 0<\frac{3\pi }{2}+k2\pi <2018\,\Leftrightarrow -\frac{3}{4}<k\le 320\,\,\left( k\in Z \right)\)  Vậy có 321 giá trị nguyên của k thỏa mãn, tức là hàm số đã cho có 321 điểm gián đoạn.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com