Cho hình đa diện SABCD có \(SA=4,\,\,SB=2,\,\,SC=3,\,\,SD=1\) và
Cho hình đa diện SABCD có \(SA=4,\,\,SB=2,\,\,SC=3,\,\,SD=1\) và \(\widehat{ASB}=\widehat{BSC}=\widehat{CSD}=\widehat{DSA}={{60}^{0}}\). Khoảng cách từ điểm A tới mặt phẳng \((SCD)\) là:
Đáp án đúng là: B
Quảng cáo
- Trên các tia SA, SB, SC lần lượt lấy các điểm A’, B’, C’ sao cho SA’=SB’=SC’=1.
- Chứng minh SA’B’C’D là chóp tứ giác đều.
- Tính khoảng cách từ A đến (SCD) thông qua khoảng cách từ A’ đến (SC’D).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












