Cho đường tròn (O) có dây AB là dây cung không đi qua tâm và I là trung điểm của dây AB. Trên
Cho đường tròn (O) có dây AB là dây cung không đi qua tâm và I là trung điểm của dây AB. Trên tia đối của tia AB lấy điểm M khác điểm A. Vẽ hai tiếp tuyến MC và MD đến (O) (tiếp điểm C thuộc cung nhỏ AB, tiếp điểm D thuộc cung lớn AB).
a) Chứng minh tứ giác OIMD nội tiếp được đường tròn.
b) Chứng minh \(M{{D}^{2}}=MA.MB\)
c) Đường thẳng OI cắt cung nhỏ AB của (O) tại điểm N, giao điểm của hai đường thẳng DN và MB là E. Chứng minh tam giác MCE cân tại M.
d) Đường thẳng ON cắt đường thẳng CD tại điểm F. Chứng minh \(\frac{1}{OI.OF}+\frac{1}{M{{E}^{2}}}=\frac{4}{C{{D}^{2}}}\)
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










