Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác đều ABC có đường cao AH. Trên cạnh BC lấy điểm M tùy ý (M không trùng với B, C, H).

Câu hỏi số 279649:
Vận dụng cao

Cho tam giác đều ABC có đường cao AH. Trên cạnh BC lấy điểm M tùy ý (M không trùng với B, C, H). Gọi P, Q lần lượt là hình chiếu vuông góc vủa M lên AB và AC.

a) Chứng minh tứ giác APMQ nội tiếp được trong đường tròn và xác định tâm O của đường tròn này.

b) Chứng minh \(OH \bot PQ\).

c) Chứng minh \(MP + MQ = AH\).

Quảng cáo

Câu hỏi:279649
Phương pháp giải

a) Chứng minh tứ giác APMQ có tổng hai góc đối bằng 1800.

b) Chứng minh OH là trung trực của PQ.

c) Dựa vào diện tích tam giác: \({S_{\Delta MAB}} + {S_{\Delta MAC}} = {S_{\Delta ABC}}\)

Giải chi tiết

Cho tam giác đều ABC có đường cao AH. Trên cạnh BC lấy điểm M tùy ý (M không trùng với B, C, H). Gọi P, Q lần lượt là hình chiếu vuông góc vủa M lên AB và AC.

a) Chứng minh tứ giác APMQ nội tiếp được trong đường tròn và xác định tâm O của đường tròn này.

Xét tứ giác APMQ có: \(\angle APM = \angle AQM = {90^0}\,\,\left( {gt} \right) \Rightarrow \angle APM + \angle AQM = {180^0} \Rightarrow \) Tứ giác APMQ là tứ giác nội tiếp đường tròn đường kính AM.

Gọi O là trung điểm của AM \( \Rightarrow \) tứ giác APMQ nội tiếp được trong đường tròn tâm O đường kính AM.

b) Chứng minh \(OH \bot PQ\).

Ta có \(\angle AHM = {90^0}\,\,\left( {gt} \right) \Rightarrow \angle AHM\) nội tiếp chắn nửa đường tròn đường kính AM \( \Rightarrow \) H thuộc đường tròn \(\left( O \right)\).

Ta có \(\angle HPQ = \angle HAC\) (hai góc nội tiếp cùng chắn cung HQ)

         \(\angle HQP = \angle HAB\) (hai góc nội tiếp cùng chắn cung HP).

Mà \(\angle HAC = \angle HAB\) (tam giác ABC đều nên đường cao AH đồng thời là đường phân giác)

\( \Rightarrow \angle HPQ = \angle HQP \Rightarrow \Delta HPQ\) cân tại H \( \Rightarrow HP = HQ\,\,\left( 1 \right)\).

Mà \(OP = OQ\) (do P, Q đều thuộc \(\left( O \right)\))  (2).

Từ (1) và (2) \( \Rightarrow OH\) là trung trực của PQ.

\( \Rightarrow OH \bot PQ\).

c) Chứng minh \(MP + MQ = AH\).

Ta có

\(\begin{array}{l}{S_{\Delta MAB}} = \frac{1}{2}MP.AB = \frac{1}{2}MP.BC\,\,\left( {Do\,\,AB = BC} \right)\\{S_{\Delta MAC}} = \frac{1}{2}MQ.AC = \frac{1}{2}MQ.BC\,\,\left( {Do\,\,AC = BC} \right)\\{S_{\Delta ABC}} = \frac{1}{2}AH.BC\end{array}\)

Mà \({S_{\Delta MAB}} + {S_{\Delta MAC}} = {S_{\Delta ABC}}\)

\(\begin{array}{l} \Rightarrow \frac{1}{2}MP.BC + \frac{1}{2}MQ.BC = \frac{1}{2}AH.BC\\ \Rightarrow \frac{1}{2}BC\left( {MP + MQ} \right) = \frac{1}{2}AH.BC\\ \Rightarrow MP + MQ = AH\,\,\left( {dpcm} \right)\end{array}\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com