Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chứng minh rằng : \(\frac{{ab}}{{\left( {c + a} \right)\left( {c + b} \right)}} + \frac{{ac}}{{\left( {b + c}

Câu hỏi số 280981:
Vận dụng cao

Chứng minh rằng : \(\frac{{ab}}{{\left( {c + a} \right)\left( {c + b} \right)}} + \frac{{ac}}{{\left( {b + c} \right)\left( {b + a} \right)}} + \frac{{bc}}{{\left( {a + b} \right)\left( {a + c} \right)}} + \frac{{2abc}}{{\left( {a + b} \right)\left( {a + c} \right)\left( {b + c} \right)}} = 1\)

Quảng cáo

Câu hỏi:280981
Phương pháp giải

Sử dụng định lí: Nếu đa thức : \(f\left( x \right) = ax + b\) có ít nhất 2 nghiệm thì \(a = b = 0\) tức là \(f\left( x \right) = 0\) với mọi x.

Giải chi tiết

 

Đặt

\(\begin{array}{l}P(x) = \frac{{xb}}{{\left( {c + x} \right)\left( {c + b} \right)}} + \frac{{xc}}{{\left( {b + c} \right)\left( {b + x} \right)}} + \frac{{bc}}{{\left( {x + b} \right)\left( {x + c} \right)}} + \frac{{2xbc}}{{\left( {x + b} \right)\left( {x + c} \right)\left( {b + c} \right)}} - 1\\\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{xb\left( {x + b} \right) + xc\left( {x + c} \right) + bc\left( {b + c} \right) + 2xbc - \left( {x + b} \right)\left( {x + c} \right)\left( {b + c} \right)}}{{\left( {x + b} \right)\left( {x + c} \right)\left( {b + c} \right)}}\end{array}\)

Xét tử số \(f\left( x \right) = xb\left( {x + b} \right) + xc\left( {x + c} \right) + bc\left( {b + c} \right) + 2xbc - \left( {x + b} \right)\left( {x + c} \right)\left( {b + c} \right)\) có hệ số của \({x^2}\) là \(b + c - \left( {b + c} \right) = 0\) \( \Rightarrow \) Bậc của \(f\left( x \right)\) nhỏ hơn hoặc bằng 1.

Ta có : \(\left\{ \begin{array}{l}f\left( b \right) = {b^2}.2b + bc\left( {b + c} \right) + bc\left( {b + c} \right) + 2{b^2}c - 2b.{\left( {b + c} \right)^2} = 0\\f\left( c \right) = cb\left( {c + b} \right) + 2{c^3} + bc\left( {b + c} \right) + 2b{c^2} - 2c\left( {c + b} \right)\left( {b + c} \right) = 0\end{array} \right.\)

Do đó b, c là 2 nghiệm của phương trình \(f\left( x \right) = 0\).

Bậc của \(f\left( x \right)\) nhỏ hơn hoặc bằng 1, trong khi đó phương trình \(f\left( x \right) = 0\) lại có 2 nghiệm phân biệt \( \Leftrightarrow f\left( x \right) \equiv 0\,\,\forall x\) hay \(P\left( x \right) = 0\,\,\forall x\).

\(\begin{array}{l}P\left( x \right) = \frac{{xb}}{{\left( {c + x} \right)\left( {c + b} \right)}} + \frac{{xc}}{{\left( {b + c} \right)\left( {b + x} \right)}} + \frac{{bc}}{{\left( {x + b} \right)\left( {x + c} \right)}} + \frac{{2xbc}}{{\left( {x + b} \right)\left( {x + c} \right)\left( {b + c} \right)}} - 1\\P\left( x \right) = \frac{{xb\left( {x + b} \right) + xc\left( {x + c} \right) + bc\left( {b + c} \right) + 2xbc - \left( {x + b} \right)\left( {x + c} \right)\left( {b + c} \right)}}{{\left( {x + b} \right)\left( {x + c} \right)\left( {b + c} \right)}} = 0\\ \Rightarrow P\left( a \right) = \frac{{ab}}{{\left( {c + a} \right)\left( {c + b} \right)}} + \frac{{ac}}{{\left( {b + c} \right)\left( {b + a} \right)}} + \frac{{bc}}{{\left( {a + b} \right)\left( {a + c} \right)}} + \frac{{2abc}}{{\left( {a + b} \right)\left( {a + c} \right)\left( {b + c} \right)}} - 1 = 0\\ \Leftrightarrow \frac{{ab}}{{\left( {c + a} \right)\left( {c + b} \right)}} + \frac{{ac}}{{\left( {b + c} \right)\left( {b + a} \right)}} + \frac{{bc}}{{\left( {a + b} \right)\left( {a + c} \right)}} + \frac{{2abc}}{{\left( {a + b} \right)\left( {a + c} \right)\left( {b + c} \right)}} = 1\end{array}\)

Vậy \(\frac{{ab}}{{\left( {c + a} \right)\left( {c + b} \right)}} + \frac{{ac}}{{\left( {b + c} \right)\left( {b + a} \right)}} + \frac{{bc}}{{\left( {a + b} \right)\left( {a + c} \right)}} + \frac{{2abc}}{{\left( {a + b} \right)\left( {a + c} \right)\left( {b + c} \right)}} = 1\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com