Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = {x^3} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm m sao cho \(\left( {{C_m}}

Câu hỏi số 281328:
Thông hiểu

Cho hàm số \(y = {x^3} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm m sao cho \(\left( {{C_m}} \right)\) cắt đường thẳng \(d:\,\,y = x + 1\) tại ba điểm phân biệt có hoành độ \({x_1},\,{x_2},\,{x_3}\) thỏa mãn \({x_1} + \,{x_2} + \,{x_3} = 101\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:281328
Phương pháp giải

+) Xét phương trình hoành độ giao điểm, tìm điều kiện để phương trình có 3 nghiệm phân biệt.

+) Sử dụng định lí Vi-ét.

Giải chi tiết

Phương trình hoành độ giao điểm của đồ thị \(\left( {{C_m}} \right)\) và đường thẳng \(d:\,\,y = x + 1\):

\({x^3} - 2m{x^2} + 1 = x + 1 \Leftrightarrow {x^3} - 2m{x^2} - x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 2mx - 1 = 0\,\,(1)\end{array} \right.\)

Để 2 đồ thị cắt nhau tại 3 điểm phân biệt thì phương trình (1) có 2 nghiệm phân biệt khác 0

\( \Leftrightarrow \left\{ \begin{array}{l}{0^2} - 2m.0 - 1 \ne 0\\{m^2} + 1 > 0\end{array} \right.\) (luôn đúng với mọi m)

Khi đó, phương trình (1) có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \({x_1} + {x_2} = 2m\) (hệ thức Vi-ét)

Đặt nghiệm \({x_3} = 0\). Ta có  \({x_1} + \,{x_2} + \,{x_3} = 101 \Leftrightarrow 2m + 0 = 101 \Leftrightarrow m = \frac{{101}}{2}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com