Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số tiệm cận của đồ thị hàm số \(y = \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}}\) là:

Câu hỏi số 281329:
Thông hiểu

Số tiệm cận của đồ thị hàm số \(y = \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}}\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:281329
Phương pháp giải

* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f(x)\).

   Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = a\,\)hoặc\(\,\mathop {\lim }\limits_{x \to  - \infty } f(x) = a \Rightarrow y = a\) là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f(x)\).

   Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) =  + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) =  - \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) =  + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) =  - \infty \,\)thì \(x = a\)  là TCĐ của đồ thị hàm số.

Giải chi tiết

 

\(y = \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}}\) (TXĐ: \(D = R{\rm{\backslash }}\left\{ {1;2} \right\}\))

 \(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}} = 1 \Rightarrow \) Đồ thị hàm số có TCN \(y = 1\).

\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}} =  + \infty ,\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}} =  - \infty ,\,\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}} =  - \infty ,\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}} =  + \infty \)

\( \Rightarrow \) Đồ thị hàm số có 2 TCĐ \(x = 1,\,\,x = 2\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com