Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \(\cot (6x + 1) - \cot x = 0\)có bao nhiêu nghiệm trên \({\rm{[}}0;100]\)?

Câu hỏi số 281984:
Vận dụng

Phương trình \(\cot (6x + 1) - \cot x = 0\)có bao nhiêu nghiệm trên \({\rm{[}}0;100]\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:281984
Phương pháp giải

- Giải phương trình tìm ra công thức nghiệm

- Từ điều kiện của nghiệm xác định tham số k nguyên trong công thức nghiệm

Giải chi tiết

Điều kiện: \(\left\{ \begin{array}{l}\sin (6x + 1) \ne 0\\\sin x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6x + 1 \ne m\pi \\x \ne n\pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne  - \frac{1}{6} + \frac{{m\pi }}{6}\\x \ne n\pi \end{array} \right.(m,\;n \in \mathbb{Z}).\)

\(\begin{array}{l}\,\,\,\,\,\,\,\,\,\cot (6x + 1) - \cot x = 0 \Leftrightarrow \cot \left( {6x + 1} \right) = \cot x\\ \Leftrightarrow 6x + 1 = x + k\pi \\ \Leftrightarrow x =  - \frac{1}{5} + \frac{{k\pi }}{5}\,\,(k \in \mathbb{Z}).\end{array}\)

Phương trình có nghiệm thuộc  \(\left[ {0;\;100} \right] \Leftrightarrow 0 \le  - \frac{1}{5} + \frac{{k\pi }}{5} \le 100\)

\( \Leftrightarrow \frac{1}{5} \le \frac{{k\pi }}{5} \le \frac{{501}}{5} \Leftrightarrow 0,31 \le k \le 159,47 \Leftrightarrow k \in \{ 1;\;\;2;...;\;\;159{\rm{\} }}\)

Vậy phương trình có 159 nghiệm thõa mãn.

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com