Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Đua ghe ngo là một trong những nét văn hóa truyền thống độc đáo của đồng bào dân tộc Khmer

Câu hỏi số 282230:
Vận dụng

Đua ghe ngo là một trong những nét văn hóa truyền thống độc đáo của đồng bào dân tộc Khmer Nam Bộ. Cuộc đua luôn thu hút hàng trăm ngàn người tham dự vào dịp lễ hội Ok-om-bok hàng năm (rằm tháng 10 âm lịch). Đua ghe ngo là dịp để các đội ghe đến tham gia tranh tài, qua đó nhằm tôn vinh, nâng cao ý thức bảo tồn di sản văn hóa truyền thống của địa phương, thể hiện tinh thần đoàn kết dân tộc, khơi dậy niềm tự hào, tinh thần yêu quê hương đất nước.

Tại lễ hội đua ghe ngo Sóc Trăng, có 56 đội ghe trong và ngoài đăng ký tham gia. Lúc đầu ban tổ chức dự kiến chia 56 đội thành các bảng đấu với số đội ở mỗi bảng bằng nhau. Tuy nhiên, đến ngày bốc thăm chia bảng thì có 1 đội không tham dự được, vì vậy ban tổ chức quyết định tăng ở mỗi bảng thêm 1 đội, do đó tổng số bảng đấu giảm đi 3 bảng. Hỏi số bảng đấu dự kiến lúc đầu là bao nhiêu?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:282230
Phương pháp giải

Giải bài toán bằng cách lập hệ phương trình.

+) Gọi số đội trong mỗi bảng là \(x\) (đội), \(\left( {0 < x < 56,\;\;x \in N} \right).\)

+) Gọi số bảng được chia là \(y\) (bảng), \(\left( {1 < y < 56,\;\;y \in N} \right).\)

Khi đó ta có phương trình:\(xy = 56\;\;\;\left( 1 \right)\)

+) Biểu diễn các đại lượng theo \(x\) và \(y.\) Và dựa vào giả thiết bài toán ta lập phương trình \(\left( 2 \right).\)

Giải hệ phương trình gồm hai phương trình \(\left( 1 \right)\) và \(\left( 2 \right)\) tìm  \(x\) và \(y.\) Đối chiếu với điều kiện cảy \(x\) và \(y\) rồi kết luận.

Giải chi tiết

Tại lễ hội đua ghe ngo Sóc Trăng, có 56 đội ghe trong và ngoài đăng ký tham gia. Lúc đầu ban tổ chức dự kiến chia 56 đội thành các bảng đấu với số đội ở mỗi bảng bằng nhau. Tuy nhiên, đến ngày bốc thăm chia bảng thì có 1 đội không tham dự được, vì vậy ban tổ chức quyết định tăng ở mỗi bảng thêm 1 đội, do đó tổng số bảng đấu giảm đi 3 bảng. Hỏi số bảng đấu dự kiến lúc đầu là bao nhiêu?

Gọi số đội trong mỗi bảng ban đầu là \(x\) (đội), \(\left( {0 < x < 56,\;\;x \in N} \right).\)

Gọi số bảng được chia ban đầu là \(y\) (bảng), \(\left( {3 < y < 56,\;\;y \in N} \right).\)

Khi đó ta có phương trình:\(xy = 56\;\;\;\left( 1 \right)\)

Có 1 đội không tham dự được nên có \(56 - 1 = 55\) đội tham dự được.

Mỗi bảng thêm 1 đội nên số đội trong mỗi bảng lúc này là: \(x + 1\) (đội).

Tổng số bảng đấu giảm đi 3 nên số bảng đấu lúc này là: \(y - 3\) (bảng).

Theo đề bài ta có phương trình:

\(\left( {x + 1} \right)\left( {y - 3} \right) = 55 \Leftrightarrow y - 3x - 3 + xy = 55 \Leftrightarrow y - 3x = 58 - xy \Leftrightarrow y - 3x = 2\;\;\;\;\left( 2 \right).\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình: \(\left\{ \begin{array}{l}xy = 56\\y - 3x = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2 + 3x\\x\left( {2 + 3x} \right) = 56\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 3x + 2\\3{x^2} + 2x - 56 = 0\end{array} \right.\)

\(\left\{ \begin{array}{l}y = 3x + 2\\\left( {x - 4} \right)\left( {3x + 14} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 3x + 2\\\left[ \begin{array}{l}x = 4\;\;\left( {tm} \right)\\x =  - \frac{{14}}{3}\;\;\;\left( {ktm} \right)\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 14\;\;\left( {tm} \right)\end{array} \right..\)

Vậy số bảng đấu dự kiến lúc đầu là 14 bảng đấu.

Đáp án cần chọn là: C

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com