Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) có ba góc nhọn, nội tiếp đường tròn \(\left( O \right),\;\;AB > AC\) và  các

Câu hỏi số 282231:
Vận dụng

Cho tam giác \(ABC\) có ba góc nhọn, nội tiếp đường tròn \(\left( O \right),\;\;AB > AC\) và  các đường cao \(AD,\;\;BE,\;\;CF\) cắt nhau tại \(H.\)

a) Gọi \(I\) là trung điểm của \(AH,\) chứng minh \(AEHF\) nội tiếp đường tròn \(\left( I \right).\)

b) Chứng minh \(DB.DC = DA.DH.\)

c) Gọi \(K\) là giao điểm khác \(A\) của hai đường tròn \(\left( O \right)\) và \(\left( I \right).\) Chứng minh \(OI//HK.\)

Quảng cáo

Câu hỏi:282231
Phương pháp giải

a) Chứng minh tứ giác AEHF có tổng hai góc đối bằng 1800.

b) Chứng minh hai tam giác ABD và tam giác CHD đồng dạng.

c) Chứng minh OI và HK cùng vuông góc với AK.

Giải chi tiết

a) Gọi \(I\) là trung điểm của \(AH,\) chứng minh \(AEHF\) nội tiếp đường tròn \(\left( I \right).\)

Xét tứ giác \(AEHF\) ta có: \(\angle AFH = \angle AEH = {90^0}\) (gt) \( \Rightarrow \angle AFH + \angle AEH = {180^0}\).

\( \Rightarrow AEHF\) nội tiếp đường tròn đường kính AH (Tứ giác có tổng hai góc đối bằng 1800).

\(\angle AFH,\;\angle AEH = {90^0} \Rightarrow \angle AFH,\;\angle AEH\) cùng nhìn đoạn \(AH\) dưới góc \({90^0}.\)

Mà I là trung điểm của AH.

Vậy tứ giác AEHF nội tiếp đường tròn \(\left( I \right)\) đườn kính AH.

b) Chứng minh \(DB.DC = DA.DH.\)

Ta có: \(\angle AHF + \angle FAH = {90^0}\)  (\(\Delta AFH\) vuông tại \(F\)).

\(\angle ABD + \angle DAB = {90^0}\) (\(\Delta ABD\) vuông tại \(D\)).

\( \Rightarrow \angle AHF = \angle ABD\) (cùng phụ với \(\angle FAH\))

Mà \(\angle DHC = \angle AHF\) (hai góc đối đỉnh).

\( \Rightarrow \angle ABD = \angle DHC\;\;\left( { = \angle AHF} \right).\)

Xét \(\Delta ABD\) và \(\Delta CHD\) ta có:

\(\begin{array}{l}\angle ADB = \angle HDC = {90^0}\\\angle ABD = \angle DHC\;\;\left( {cmt} \right)\\ \Rightarrow \Delta ABD \sim \Delta CHD\;\;\left( {g - g} \right)\\ \Rightarrow \frac{{DB}}{{DH}} = \frac{{DA}}{{DC}} \Leftrightarrow DB.DC = DA.DH.\;\;\left( {dpcm} \right).\end{array}\) 

c) Gọi \(K\) là giao điểm khác \(A\) của hai đường tròn \(\left( O \right)\)\(\left( I \right).\) Chứng minh \(OI//HK.\)

Ta có:

\(A;K \in \left( I \right) \Rightarrow IA = IK \Rightarrow I\)  thuộc trung trực của AK;

 \(A;K \in \left( O \right) \Rightarrow OA = OK \Rightarrow O\) thuộc trung trực của AK;

\( \Rightarrow OI\) là trung trực của AK \( \Rightarrow OI \bot AK\).

Lại có \(\angle AKH\) là góc nội tiếp chắn nửa đường tròn \(\left( I \right) \Rightarrow \angle AKH = {90^0} \Rightarrow HK \bot AK\).

\( \Rightarrow OI//HK\) (cùng vuông góc với AK) (đpcm).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com