a) Trên mặt phẳng Oxy, cho parabol \(\left( P \right):\,\,y = \frac{1}{4}{x^2}\) và A, B là 2 điểm thuộc
a) Trên mặt phẳng Oxy, cho parabol \(\left( P \right):\,\,y = \frac{1}{4}{x^2}\) và A, B là 2 điểm thuộc (P) có hoành độ tương ứng bằng \( - 2\) và 4. Tìm tọa độ hai điểm A, B và viết phương trình đường thẳng d đi qua hai điểm A, B.
b) Cho một mảnh vườn hình chữ nhật. Biết rằng nếu giảm chiều rộng đi 3m và tăng chiều dài thêm 8m thì diện tích mảnh vườn đó giảm đi \(54{m^2}\) so với diện tích ban đầu, nếu tăng chiều rộng thêm 2m và giảm chiều dài đi 4m thì diện tích mảnh vườn đó tăng \(32{m^2}\) so với diện tích ban đầu. Tính chiều rộng và chiều dài ban đầu của mảnh vườn đó?
Đáp án đúng là: A
Quảng cáo
a) +) Tìm tọa độ giao điểm A, B bằng cahcs thay các hoành độ đã biết vào công thức của hàm số để tìm tung độ.
+) Gọi phương trình đường thẳng AB cần tìm có dạng \(y = ax + b\)
+) Thay tọa độ điểm A, B vừa tìm được vào công thức trên để tìm a, b từ đó ta lập được phương trình đường thẳng AB.
b) Gọi chiều rộng ban đầu của mảnh vườn hình chữ nhật là: \(x\;\left( m \right),\left( {x > 3} \right).\)
Chiều dài ban đầu của mảnh vườn hình chữ nhật là: \(y\left( m \right),\;\left( {y > 4,\;y > x} \right).\)
Sử dụng các dữ liệu bài cho để lập hệ phương trình, giải hệ phương trình tìm x, y sau đó đối chiếu với điều kiện xác định rồi kết luận.
Đáp án cần chọn là: A
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










