Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chứng tỏ rẳng 2 số \(2n + 1\) và \(6n + 5\) là hai số nguyên tố cùng nhau với mọi số tự nhiên

Câu hỏi số 286221:
Vận dụng cao

Chứng tỏ rẳng 2 số \(2n + 1\) và \(6n + 5\) là hai số nguyên tố cùng nhau với mọi số tự nhiên n.

Quảng cáo

Câu hỏi:286221
Phương pháp giải

Đặt ƯCLN của chúng là d suy ra mỗi số đều chia hết cho d, sau đó ta tìm cách chứng minh \(d = 1\)

Giải chi tiết

Đặt ƯCLN\(\left( {2n + 1;6n + 5} \right) = d\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\left( {2n + 1} \right)\,\, \vdots \,\,d\\\left( {6n + 5} \right)\,\, \vdots \,\,d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}3.\left( {2n + 1} \right)\,\, \vdots \,\,d\\\left( {6n + 5} \right)\,\, \vdots \,\,d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\left( {6n + 3} \right)\,\, \vdots \,\,d\\\left( {6n + 5} \right)\,\, \vdots \,\,d\end{array} \right.\\ \Rightarrow \left[ {\left( {6n + 5} \right) - \left( {6n + 3} \right)} \right]\,\, \vdots \,\,d\\ \Rightarrow \left( {6n + 5 - 6n - 3} \right)\,\, \vdots \,\,d\\ \Rightarrow 2\,\, \vdots \,\,d\\ \Rightarrow d \in \left\{ {1;2} \right\}\end{array}\)

Mặt khác \(2n + 1\) là số lẻ nên \(d \ne 2\) \( \Rightarrow d = 1\)

Vậy \(2n + 1\) và \(6n + 5\) là hai số nguyên tố cùng nhau với mọi số tự nhiên n.

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com