Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(\Delta ABC\) vuông tại \(A\) , đường cao \(AH\) . Gọi \(M,\,N\)  theo thứ tự là chân các

Câu hỏi số 286931:
Vận dụng

Cho \(\Delta ABC\) vuông tại \(A\) , đường cao \(AH\) . Gọi \(M,\,N\)  theo thứ tự là chân các đường vuông góc kẻ từ \(H\)  đến \(AB,\,AC\) . Gọi \(O\)  là giao điểm của \(AH\)  và \(MN\),\(K\) là trung điểm của \(CH\)

a. Chứng minh rằng tứ giác \(AMHN\)  là hình chữ nhật.

b. Tính số đo \(\angle MNK\)

c. Chứng minh rằng \(BO \bot AK\)

Quảng cáo

Câu hỏi:286931
Phương pháp giải

Áp dụng dấu hiệu nhận biết hình chữ nhật, tính chất trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy

Giải chi tiết

a. Vì \(M,\,N\) lần lượt là hình chiếu của \(H\) trên \(AB,\,AC\) (gt) nên \( \Rightarrow \angle HNA = \angle HMA = {90^0}\)

Lại có \(\angle MAN = {90^0}\left( {gt} \right) \Rightarrow AMHN\) là hình chữ nhật (dhnb)

b. Xét \({\Delta _v}HNC\) có K là trung điểm của \(HC\left( {gt} \right) \Rightarrow NK\) là đường trung tuyến.

Áp dụng tính chất trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy:

\( \Rightarrow NK = HK = \frac{{HC}}{2} \Rightarrow \Delta HKN\) cân tại K (định nghĩa)

\( \Rightarrow \angle KHN = \angle KNH\) (tính chất)

Vì \(AMHN\) là hình chữ nhật (cmt) \( \Rightarrow \angle MNH = \angle AHN\)

Lại có: \(\angle AHN + \angle NHC = {90^0} \Rightarrow \angle MNH + \angle HNK = {90^0} \Rightarrow \angle MNK = {90^0}\)

c. Xét \(\Delta AHC\) có \(O,\;K\) lần lượt là trung điểm của \(AH,\;\;HC \Rightarrow OK\) là đường trung bình của \(\Delta AHC.\)

\( \Rightarrow OK//AC.\) (tính chất đường trung bình)

Mà \(AC \bot AB = \left\{ A \right\}\;\;\left( {gt} \right) \Rightarrow OK \bot AB.\)

Xét \(\Delta ABK\) có \(AH,\;KO\) là các đường cao cắt nhau tại \(O \Rightarrow O\) là trực tâm của \(\Delta ABK.\)

\( \Rightarrow BO\) là đường cao của \(\Delta ABK \Rightarrow BO \bot AK.\) (đpcm)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com