Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại A. Biết \(AB = 2a\),\(AC =

Câu hỏi số 291565:
Vận dụng cao

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại A. Biết \(AB = 2a\),\(AC = a,\,\,AA' = 4a\). Gọi M là điểm thuộc cạnh AA’ sao cho \(MA' = 3MA\). Tính khoảng cách giữa hai đường thẳng chéo nhau \(BC\) và \(C'M\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:291565
Giải chi tiết

Gọi \(I = B'M \cap BA'\), ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}BC//B'C'\\BC \not\subset \left( {MB'C'} \right)\end{array} \right. \Rightarrow BC//\left( {MB'C'} \right)\\ \Rightarrow d\left( {BC;C'M} \right) = d\left( {BC;\left( {MB'C'} \right)} \right) = d\left( {B;\left( {MB'C'} \right)} \right)\end{array}\)

Mà hai tam giác IMA’ và IB’B đồng dạng, nên:

\(\dfrac{{IA'}}{{IB}} = \dfrac{{MA'}}{{BB'}} = \dfrac{3}{4} \Rightarrow IA' = \dfrac{3}{4}IB \Rightarrow d\left( {B;\left( {MB'C'} \right)} \right) = \dfrac{4}{3}d\left( {A';\left( {MB'C'} \right)} \right)\)

Dựng \(A'K \bot B'C'\)tại K, \(A'H \bot MK\) tại H, ta có:

\(\left\{ \begin{array}{l}B'C' \bot A'K\\B'C' \bot MA'\end{array} \right. \Rightarrow B'C' \bot \left( {MA'K} \right) \Rightarrow A'H \bot B'C'\)

Mà \(A'H \bot MK \Rightarrow A'H \bot \left( {MB'C'} \right) \Rightarrow d\left( {A';\left( {MB'C'} \right)} \right) = A'H\)

Xét tam giác A’B’C’ vuông tại A’ có: \(\dfrac{1}{{A'{K^2}}} = \dfrac{1}{{A'B{'^2}}} + \dfrac{1}{{A'C{'^2}}} = \dfrac{1}{{4{a^2}}} + \dfrac{1}{{{a^2}}} = \dfrac{5}{{4{a^2}}}\)

Xét tam giác MA’K vuông tại A’ có:  \(\dfrac{1}{{A'{H^2}}} = \dfrac{1}{{A'{K^2}}} + \dfrac{1}{{A'{M^2}}} = \dfrac{5}{{4{a^2}}} + \dfrac{1}{{9{a^2}}} = \dfrac{{49}}{{36{a^2}}} \Rightarrow A'H = \dfrac{{6a}}{7}\)

Vậy \(d\left( {BC;C'M} \right) = \dfrac{4}{3}A'H = \dfrac{4}{3}.\dfrac{{6a}}{7} = \dfrac{{8a}}{7}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com