Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Từ 40 điểm phân biệt không có ba điểm nào thẳng hàng, có thể tạo được bao nhiêu đối

Câu hỏi số 294200:
Vận dụng

Từ 40 điểm phân biệt không có ba điểm nào thẳng hàng, có thể tạo được bao nhiêu đối tượng hình học gồm : đoạn thẳng, các đa giác.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:294200
Phương pháp giải

Đoạn thẳng được tạo thành từ 2 điểm phân biệt.

Đa giác được tạo thành từ 2 điểm phân biệt trở lên.

Giải chi tiết

Số đoạn thẳng được tạo thành là \(C_{40}^2\)

Số đa giác được thành là \(C_{40}^3 + C_{40}^4 + C_{40}^5 + ... + C_{40}^{40}\)

Do đó tổng số đối tượng hình học gồm : đoạn thẳng, các đa giác là: \(T = C_{40}^2 + C_{40}^3 + C_{40}^4 + ... + C_{40}^{40}\)

Xét tổng \({\left( {1 + 1} \right)^{40}} = C_{40}^0 + C_{40}^1 + C_{40}^2 + ... + C_{40}^{40} = {2^{40}}\)

\( \Rightarrow T = C_{40}^2 + C_{40}^3 + C_{40}^4 + ... + C_{40}^{40} = {2^{40}} - \left( {C_{40}^0 + C_{40}^1} \right) = {2^{40}} - 41 = 1099511627735\)

Chọn B.

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com