Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB // CD và \(AB = 2DC\). Gọi O là giao điểm của

Câu hỏi số 295226:
Vận dụng

Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB // CD và \(AB = 2DC\). Gọi O là giao điểm của AC và BD, G là trọng tâm tam giác SBC, H là giao điểm của DG và (SAC). Tỉ số \(\dfrac{{GH}}{{GD}}\) bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:295226
Phương pháp giải

Áp dụng định lí Ta-lét.

Giải chi tiết

Gọi M là trung điểm của BC, \(I = AC \cap DM\). Trong (SDM) gọi \(H = DG \cap SI\) ta có:

\(\begin{array}{l}I \in AC \Rightarrow I \in \left( {SAC} \right) \Rightarrow SI \subset SAC\\H \in SI \Rightarrow H \in \left( {SAC} \right) \Rightarrow H = DG \cap \left( {SAC} \right)\end{array}\).

Gọi N là trung điểm của AD, \(E = AC \cap MN\) \( \Rightarrow MN\) là đường trung bình của hình thang ABCD \( \Rightarrow MN//AB//CD\) và \(MN = \dfrac{{AB + CD}}{2} = \dfrac{{2CD + CD}}{2} = \dfrac{{3CD}}{2}\).

Áp dụng định lí Ta-lét ta có: \(\dfrac{{NE}}{{CD}} = \dfrac{{AN}}{{AD}} = \dfrac{1}{2} \Rightarrow NE = \dfrac{1}{2}CD \Rightarrow ME = \dfrac{3}{2}CD - \dfrac{1}{2}CD = CD\)

\(\dfrac{{IM}}{{ID}} = \dfrac{{CD}}{{MN}} = \dfrac{{ME}}{{CD}} = 1 \Rightarrow IM = ID\).

Kẻ \(GK//DM\), áp dụng định lí Vi-ét ta có : \(\dfrac{{GH}}{{DH}} = \dfrac{{KG}}{{ID}} = \dfrac{{KG}}{{IM}} = \dfrac{{KG}}{{IM}} = \dfrac{{SG}}{{SM}} = \dfrac{2}{3}\)

\( \Rightarrow \dfrac{{GH}}{{GH + DH}} = \dfrac{2}{{2 + 3}} = \dfrac{2}{5} \Rightarrow \dfrac{{GH}}{{GD}} = \dfrac{2}{5}\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com