Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm tất cả các giá trị của m để phương trình \({x^2} - \left( {m + 1} \right)x + m = 0\) có hai

Câu hỏi số 297099:
Vận dụng

Tìm tất cả các giá trị của m để phương trình \({x^2} - \left( {m + 1} \right)x + m = 0\) có hai nghiệm phân biệt và nghiệm này bằng một nửa nghiệm kia. 

Đáp án đúng là: C

Quảng cáo

Câu hỏi:297099
Phương pháp giải

Phương trình bậc 2 có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0\). Kết hợp với hệ thức Vi-ét và dữ kiện đề bài để tìm m.

Giải chi tiết

\({x^2} - \left( {m + 1} \right)x + m = 0\)    (1)

Có : \(\Delta  = {\left( {m + 1} \right)^2} - 4m = {\left( {m - 1} \right)^2}\)

Để phương trình (1) có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0 \Leftrightarrow m - 1 \ne 0 \Leftrightarrow m \ne 1\)

Gọi \({x_1} > {x_2}\) là 2 nghiệm của (1)

Theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m + 1\\{x_1}.{x_2} = m\end{array} \right.\)

Mặt khác theo đề bài: \({x_1} = 2{x_2} \Rightarrow \left\{ \begin{array}{l}2{x_2} + {x_2} = m + 1\\2{x_2}.{x_2} = m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = \frac{{m + 1}}{3}\\2{x_2}^2 = m\end{array} \right.\)

\( \Rightarrow 2.\frac{{{{\left( {m + 1} \right)}^2}}}{9} = m \Leftrightarrow 2{m^2} + 4m + 2 = 9m \Leftrightarrow 2{m^2} - 5m + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 2\,\,\,\left( {tm} \right)\\m = \frac{1}{2}\,\,\,\left( {tm} \right)\end{array} \right.\)

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com