Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong khai triển \(f\left( x \right) = {\left( {2x - 3} \right)^{16}} = {a_{16}}{x^{16}} + {a_{15}}{x^{15}} +

Câu hỏi số 297378:
Vận dụng

Trong khai triển \(f\left( x \right) = {\left( {2x - 3} \right)^{16}} = {a_{16}}{x^{16}} + {a_{15}}{x^{15}} + {a_{14}}{x^{14}} + ... + {a_3}{x^3} + {a_2}{x^2} + {a_1}x + {a_0}\) thì tổng của tất cả các hệ số là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:297378
Phương pháp giải

Sử dụng khai triển nhị thức Newton \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \), sau đó cho \(x = 1\) để tìm tổng các hệ số.

Giải chi tiết

\({\left( {2x - 3} \right)^{16}} = \sum\limits_{k = 0}^{16} {C_{16}^k{{\left( {2x} \right)}^k}{{\left( { - 3} \right)}^{16 - k}}}  = \sum\limits_{k = 0}^{16} {C_{16}^k{2^k}{{\left( { - 3} \right)}^{16 - k}}.{x^k}} \)

Khi \(x = 1\) ta có \({\left( {2.1 - 3} \right)^{16}} = \sum\limits_{k = 0}^{16} {C_{16}^k{2^k}{{\left( { - 3} \right)}^{16 - k}}}  = 1\).

Vậy tổng tất cả hệ số trong khai triển trên là 1.

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com