Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp S.ABCD đáy là hình thang vuông tại A và B, \(AB = BC = a;\,\,AD = 2a\). Biết SA vuông góc

Câu hỏi số 297995:
Vận dụng

Cho hình chóp S.ABCD đáy là hình thang vuông tại A và B, \(AB = BC = a;\,\,AD = 2a\). Biết SA vuông góc với đáy (ABCD), \(SA = a\). Gọi M, N lần lượt là trung điểm SB, CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:297995
Phương pháp giải

Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.

Giải chi tiết

 

Gọi P và Q lần lượt là trung điểm của AB và SC ta có : MQ // NP // BC \( \Rightarrow M,N,P,Q\) đồng phẳng.

Gọi \(F = NP \cap AC \Rightarrow \left( {MNPQ} \right) \cap \left( {SAC} \right) = QF\),

\(I = QF \cap MN \Rightarrow I = MN \cap \left( {SAC} \right)\).

Gọi E là trung điểm của AD, ABCE là hình vuông nên CE = a.

Xét tam giác ACD có \(CE = \dfrac{1}{2}AD = a \Rightarrow \Delta ACD\) vuông tại C \( \Rightarrow CD \bot AC\).

Ta có:

\(\left\{ \begin{array}{l}CD \bot AC\\CD \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SAC} \right) \Rightarrow NC \bot \left( {SAC} \right) \Rightarrow \)C là hình chiếu của N trên (SAC)

 

\( \Rightarrow \angle \left( {MN;\left( {SAC} \right)} \right) = \angle \left( {NI;CI} \right) = \angle NIC\).

Xét tam giác vuông CED có \(CD = \sqrt {C{E^2} + E{D^2}}  = a\sqrt 2  \Rightarrow CN = \dfrac{{a\sqrt 2 }}{2}\).

Có \(MO = \dfrac{1}{2}BC = \dfrac{a}{2};\,\,NP = \dfrac{{AD + BC}}{2} = \dfrac{{3a}}{2}\); \(\dfrac{{PF}}{{BC}} = \dfrac{{AP}}{{AB}} = \dfrac{1}{2} \Rightarrow PF = \dfrac{a}{2} \Rightarrow FN = a\).

Áp dụng định lí Ta-lét ta có: \(\dfrac{{IN}}{{IM}} = \dfrac{{NF}}{{MQ}} = 2 \Rightarrow IN = 2IM \Rightarrow IN = \dfrac{2}{3}MN\).

Xét tam giác vuông MNP có \(MN = \sqrt {M{P^2} + N{P^2}}  = \sqrt {{{\left( {\dfrac{{SA}}{2}} \right)}^2} + N{P^2}}  = \dfrac{{a\sqrt {10} }}{2} \Rightarrow IN = \dfrac{2}{3}.\dfrac{{a\sqrt {10} }}{2} = \dfrac{{a\sqrt {10} }}{3}\).

Xét tam giác vuông NIC : \(\sin \angle NIC = \dfrac{{CN}}{{NI}} = \dfrac{{\dfrac{{a\sqrt 2 }}{2}}}{{\dfrac{{a\sqrt {10} }}{3}}} = \dfrac{{3\sqrt 5 }}{{10}}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com