Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm các số thực \(a,b\) và \(c\)  để đồ thị của hàm số \(y = a{x^2} + bx + c\) là một parabol

Câu hỏi số 298755:
Vận dụng

Tìm các số thực \(a,b\) và \(c\)  để đồ thị của hàm số \(y = a{x^2} + bx + c\) là một parabol có đỉnh \(I\left( {\frac{1}{4};\frac{5}{4}} \right)\) và cắt trục tung tại điểm có tung độ bằng 2.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:298755
Phương pháp giải

Đồ thị hàm số \(y = a{x^2} + bx + c\,\,(a \ne 0)\) là parabol có đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

Giải chi tiết

Đồ thị hàm số \(y = a{x^2} + bx + c\,\,(a \ne 0)\) cắt trục tung tại điểm có tung độ bằng 2

\( \Rightarrow \) đồ thị hàm số đi qua điểm \(\left( {0;\;2} \right) \Rightarrow c = 2.\)

Lại có đồ thị hàm số có đỉnh là \(I\left( {\frac{1}{4};\;\frac{5}{4}} \right)\)  nên ta có hệ phương trình:

\(\left\{ \begin{array}{l} - \frac{b}{{2a}} = \frac{1}{4}\\\frac{1}{{16}}a + \frac{1}{4}b + c = \frac{5}{4}\\c = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2a =  - 4b\\a + 4b + 16c = 20\\c = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 12\\b =  - 6\\c = 2\end{array} \right.\)

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com