Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xác định (P) \(y = a{x^2} + bx + c\) biết hàm số đạt giá trị nhỏ nhất bằng \(\frac{3}{4}\) khi \(x

Câu hỏi số 300015:
Vận dụng

Xác định (P) \(y = a{x^2} + bx + c\) biết hàm số đạt giá trị nhỏ nhất bằng \(\frac{3}{4}\) khi \(x = \frac{1}{2}\) và nhận giá trị bằng 1 khi \(x = 1.\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:300015
Phương pháp giải

Đồ thị hàm số \(y = a{x^2} + bx + c\,\,(a \ne 0)\) là parabol có đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

Giải chi tiết

Hàm có có giá trị nhỏ nhất \( \Rightarrow a > 0\) và \({y_{\min }} = {y_I}\) là giá trị nhất của hàm số tại \(x = {x_I}\)

Từ dữ kiện đề bài ta có hệ phương trình:

\(\left\{ \begin{array}{l}{x_I} = \frac{1}{2}\\{y_I} = y\left( {\frac{1}{2}} \right) = \frac{3}{4}\\y\left( 1 \right) = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - \frac{b}{{2a}} = \frac{1}{2}\\\frac{1}{4}a + \frac{1}{2}b + c = \frac{3}{4}\\a + b + c = 1\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}a = 1\;\;\left( {tm} \right)\\b =  - 1\\c = 1\end{array} \right. \Rightarrow y = {x^2} - x + 1\)

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com