Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = mx + 1\;\;\left( 1 \right)\)  với \(m\) là tham số, \(m \ne 0.\)

Cho hàm số \(y = mx + 1\;\;\left( 1 \right)\)  với \(m\) là tham số, \(m \ne 0.\)

Trả lời cho các câu 1, 2, 3 dưới đây:

Câu hỏi số 1:
Vận dụng

Tìm m để đồ thị hàm số (1) đi qua điểm \(M\left( { - 1; - 1} \right).\) Với m vừa tìm được, vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ \(Oxy.\)

Đáp án đúng là: B

Câu hỏi:301482
Phương pháp giải

Thay tọa độ điểm \(M\left( { - 1; - 1} \right)\) vào công thức hàm số \(\left( 1 \right)\) để tìm m.

+) Với giá trị m vừa tìm được, ta thay vào công thức hàm số và vẽ đồ thị hàm số trên mặt phẳng tọa độ.

Giải chi tiết

Đồ thị hàm số \(\left( 1 \right)\) đi qua điểm \(M\left( { - 1; - 1} \right)\) nên ta có:

\( - 1 = m\left( { - 1} \right) + 1 \Leftrightarrow m = 2\;\;\left( {tm} \right)\)

Vậy với \(m = 2\) thì đồ thị hàm số đã cho đi qua điểm \(M\left( { - 1; - 1} \right).\)

Với \(m = 2\) ta có: \(y = 2x + 1.\)

Ta có bảng giá trị:

Vậy đồ thị hàm số \(y = 2x + 1\) là đường thẳng đi qua hai điểm \(\left( {0;\;1} \right),\;\left( { - 1; - 1} \right).\)

Đáp án cần chọn là: B

Câu hỏi số 2:
Vận dụng

Tìm m để đồ thị hàm số (1) song song với đường thẳng \(\left( d \right):\;y = \left( {{m^2} - 2} \right)x + 2m + 3.\)

Đáp án đúng là: C

Câu hỏi:301483
Phương pháp giải

Hai đường thẳng \({d_1}:\;\;y = {a_1}x + {b_1}\) và \({d_2}:\;y = {a_2}x + {b_2}\) song song với nhau \( \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {a_2}\\{b_1} \ne {b_2}\end{array} \right..\)

Giải chi tiết

Điều kiện \(m \ne 0.\)

Đường thẳng \(y = mx + 1\;\;\left( 1 \right)\) song song với đường thẳng \(\left( d \right):\;y = \left( {{m^2} - 2} \right)x + 2m + 3\)

\( \Leftrightarrow \left\{ \begin{array}{l}m = {m^2} - 2\\2m + 3 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - m - 2 = 0\\2m \ne  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m =  - 1\\m = 2\end{array} \right.\\m \ne  - 1\end{array} \right. \Leftrightarrow m = 2\;\;\left( {tm} \right)\)

Vậy \(m = 2\) thỏa mãn điều kiện bài toán.

Đáp án cần chọn là: C

Câu hỏi số 3:
Vận dụng

Tìm m để khoảng cách từ gốc tọa độ O đến đồ thị hàm số (1) bằng \(\frac{2}{{\sqrt 5 }}.\)

Đáp án đúng là: C

Câu hỏi:301484
Phương pháp giải

Gọi H  là hình chiếu của O trên đường thẳng \(\left( 1 \right).\) Khi đó áp dụng hệ thức lượng trong tam giác vuông để tính độ dài OH.

Giải chi tiết

Điều kiện \(m \ne 0.\)

Gọi \(A,\;B\) lần lượt là các giao điểm của đường thẳng \(\left( 1 \right)\) với các trục \(Ox,\;Oy.\)

Khi đó ta có: \(A\left( {{x_1};\;0} \right),\;\;B\left( {0;\;{y_2}} \right).\)

\( \Rightarrow \left\{ \begin{array}{l}0 = m{x_1} + 1\\m.0 + 1 = {y_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} =  - \frac{1}{m}\\{y_2} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( { - \frac{1}{m};\;0} \right)\\B\left( {0;\;1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}OA = \left| { - \frac{1}{m}} \right| = \frac{1}{{\left| m \right|}}\\OB = \left| 1 \right| = 1\end{array} \right..\)

Gọi \(H\) là hình chiếu của \(O\) trên đường thẳng \(\left( 1 \right) \Rightarrow OH = \frac{2}{{\sqrt 5 }}.\)

Khi đó ta có \(\Delta AOB\) vuông tại \(O\) và có đường cao \(OH.\)

Áp dụng hệ thức lượng cho \(\Delta AOB\) vuông tại \(O\) và có đường cao \(OH\)  ta có:

\(\begin{array}{l}\;\;\;\;\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} \Leftrightarrow \frac{1}{{{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^2}}} = \frac{1}{{{{\left| {{x_1}} \right|}^2}}} + \frac{1}{{{{\left| {{y_2}} \right|}^2}}}\\ \Leftrightarrow \frac{5}{4} = \frac{1}{{{{\left( { - \frac{1}{m}} \right)}^2}}} + \frac{1}{{{1^2}}} \Leftrightarrow \frac{5}{4} = {m^2} + 1\\ \Leftrightarrow 5 = 4{m^2} + 4 \Leftrightarrow 4{m^2} = 1 \Leftrightarrow {m^2} = \frac{1}{4} \Leftrightarrow m =  \pm \frac{1}{2}\;\left( {tm} \right)\end{array}\)

Vậy \(m =  \pm \frac{1}{2}\) thỏa mãn điều kiện bài toán.

Đáp án cần chọn là: C

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com