Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho bất phương trình \(m{.9^{2{x^2} - x}} - \left( {2m + 1} \right){6^{2{x^2} - x}} + m{4^{2{x^2} - x}} \le 0\).

Câu hỏi số 302074:
Vận dụng cao

Cho bất phương trình \(m{.9^{2{x^2} - x}} - \left( {2m + 1} \right){6^{2{x^2} - x}} + m{4^{2{x^2} - x}} \le 0\). Tìm m để bất phương trình nghiệm đúng \(\forall x \ge \dfrac{1}{2}\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:302074
Phương pháp giải

+) Chia cả 2 vế của bất phương trình cho \({4^{2{x^2} - x}}\).

+) Đặt \({\left( {\dfrac{3}{2}} \right)^{2{x^2} - x}} = t\), với \(x \ge \dfrac{1}{2}\) xác định khoảng giá trị của t.

+) Đưa bất phương trình về dạng \(m \le f\left( t \right)\,\,\forall t \in \left( {a;b} \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left( {a;b} \right)} f\left( t \right)\).

+) Lập BBT hàm số \(y = f\left( t \right)\) và kết luận.

Giải chi tiết

\(\begin{array}{l}m{.9^{2{x^2} - x}} - \left( {2m + 1} \right){6^{2{x^2} - x}} + m{4^{2{x^2} - x}} \le 0\\ \Leftrightarrow m.\dfrac{{{9^{2{x^2} - x}}}}{{{4^{2{x^2} - x}}}} - \left( {2m + 1} \right)\dfrac{{{6^{2{x^2} - x}}}}{{{4^{2{x^2} - x}}}} + m \le 0\\ \Leftrightarrow m{\left[ {{{\left( {\dfrac{3}{2}} \right)}^{2{x^2} - x}}} \right]^2} - \left( {2m + 1} \right){\left( {\dfrac{3}{2}} \right)^{2{x^2} - x}} + m \le 0\end{array}\)

 

Đặt \({\left( {\dfrac{3}{2}} \right)^{2{x^2} - x}} = t\) với \(x \ge \dfrac{1}{2}\). Xét hàm số \(f\left( x \right) = 2{x^2} - x\) ta có BBT:

 

\( \Rightarrow f\left( x \right) \ge 0\,\,\forall x \ge \dfrac{1}{2} \Leftrightarrow t \ge {\left( {\dfrac{3}{2}} \right)^0} = 1\).

Khi đó bất phương trình trở thành \(m{t^2} - \left( {2m + 1} \right)t + m \le 0\,\,\forall t \ge 1\).

\( \Leftrightarrow m\left( {{t^2} - 2t + 1} \right) - t \le 0\,\,\,\forall t \ge 1 \Leftrightarrow m{\left( {t - 1} \right)^2} - t \le 0\,\,\,\forall t \ge 1\,\).

Khi \(t = 1\,\) ta có \( - 1 \le 0\) luôn đúng.

Xét khi \(t > 1 \Rightarrow m \le \dfrac{t}{{{{\left( {t - 1} \right)}^2}}} = f\left( t \right)\,\,\forall t > 1 \Leftrightarrow m \le \mathop {\min }\limits_{t > 1} f\left( t \right)\).

 Ta có \(f'\left( t \right) = \dfrac{{{{\left( {t - 1} \right)}^2} - t.2\left( {t - 1} \right)}}{{{{\left( {t - 1} \right)}^4}}} = \dfrac{{t - 1 - 2t}}{{{{\left( {t - 1} \right)}^3}}} = \dfrac{{ - t - 1}}{{{{\left( {t - 1} \right)}^3}}} = 0 \Leftrightarrow t =  - 1\).

BBT:

 

Dựa vào BBT của hàm số \(y = f\left( t \right)\) ta có \(\mathop {\min }\limits_{t > 1} f\left( t \right) > 0 \Rightarrow m \le 0\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com