Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập hợp tất cả các giá trị của tham số m để hàm số \(y = \dfrac{{4x + 7}}{{{{\log }_{2018}}\left(

Câu hỏi số 302444:
Vận dụng

Tập hợp tất cả các giá trị của tham số m để hàm số \(y = \dfrac{{4x + 7}}{{{{\log }_{2018}}\left( {{x^2} - 2x + {m^2} - 6m + 10} \right)}}\) xác định với mọi \(x \in R\) là :

Đáp án đúng là: D

Quảng cáo

Câu hỏi:302444
Phương pháp giải

+) Hàm số \(y = {\log _a}f\left( x \right)\,\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( {x > 0} \right)\).

+) Hàm số \(\dfrac{1}{A}\) xác định \( \Leftrightarrow A \ne 0\).

Giải chi tiết

Hàm số \(y = \dfrac{{4x + 7}}{{{{\log }_{2018}}\left( {{x^2} - 2x + {m^2} - 6m + 10} \right)}}\) xác định với mọi \(x \in R\) khi và chỉ khi

\(\begin{array}{l}\left\{ \begin{array}{l}{\log _{2018}}\left( {{x^2} - 2x + {m^2} - 6m + 10} \right) \ne 0\,\,\forall x \in R\\{x^2} - 2x + {m^2} - 6m + 10 > 0\,\,\,\forall x \in R\,\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 2x + {m^2} - 6m + 10 \ne 1\,\,\,\forall x \in R\\{x^2} - 2x + {m^2} - 6m + 10 > 0\,\,\,\forall x \in R\,\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - 1} \right)^2} + {\left( {m - 3} \right)^2} \ne 1\,\,\,\forall x \in R\\{\left( {x - 1} \right)^2} + {\left( {m - 3} \right)^2} > 0\,\,\,\forall x \in R\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 3} \right)^2} \ne 1 - {\left( {x - 1} \right)^2}\,\,\,\forall x \in R\,\\{\left( {x - 1} \right)^2} + {\left( {m - 3} \right)^2} > 0\,\,\forall x \in R\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 3} \right)^2} > 1\\m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 4\\m < 2\end{array} \right.\\m \ne 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m > 4\\m < 2\end{array} \right.\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com