Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ trục tọa độ Oxyz cho ba mặt phẳng \(\left( P \right):\,\,x - 2y + z - 1 = 0\);

Câu hỏi số 302450:
Vận dụng

Trong không gian với hệ trục tọa độ Oxyz cho ba mặt phẳng \(\left( P \right):\,\,x - 2y + z - 1 = 0\); \(\left( Q \right):\,\,x - 2y + z + 8 = 0;\,\,\left( R \right):\,\,x - 2y + z - 4 = 0\). Một đường thẳng d thay đổi cắt ba mặt \(\left( P \right),\,\,\left( Q \right),\,\,\left( R \right)\) lần lượt tại A, B, C. Tìm giá trị nhỏ nhất của \(T = A{B^2} + \dfrac{{144}}{{A{C^2}}}\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:302450
Phương pháp giải

+) Nhận xét \(\left( P \right)\parallel \left( Q \right)\parallel \left( R \right)\).

+) Sử dụng BĐT Cô-si và định lí Ta-let đánh giá biểu thức T.

Giải chi tiết

Dễ dàng nhận thấy \(\left( P \right)\parallel \left( Q \right)\parallel \left( R \right)\).

 

Kẻ đường thẳng qua B vuông góc với cả 3 mặt phẳng (P), (Q), (R), cắt (P) tại H và cắt (Q) tại K.

Ta có \(BH = d\left( {\left( Q \right);\left( P \right)} \right) = 9;\,\,\,HK = d\left( {\left( P \right);\left( R \right)} \right) = 3\)

Khi đó ta có: \(T = A{B^2} + \dfrac{{144}}{{A{C^2}}} \ge 2\sqrt {A{B^2}.\dfrac{{144}}{{A{C^2}}}}  = 24\dfrac{{AB}}{{AC}} = 24.\dfrac{{BH}}{{HK}} = 24.\dfrac{9}{3} = 72\).

Vậy \({T_{\min }} = 72\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com