Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng \(a.\) Tính cosin  của góc giữa hai

Câu hỏi số 304343:
Vận dụng

Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng \(a.\) Tính cosin  của góc giữa hai mặt bên không liền kề nhau.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:304343
Phương pháp giải

+ Sử dụng  định nghĩa để tìm góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) :

\(\left\{ \begin{array}{l}\left( P \right) \cap \left( Q \right) = d\\a \bot d;\,a \subset \left( P \right)\\b \bot d;b \subset \left( Q \right)\end{array} \right.\)  khi đó góc giữa \(\left( P \right)\) và \(\left( Q \right)\) chính là góc giữa hai đường thẳng \(a\) và \(b.\)

+ Sử dụng định lý  hàm số cos trong tam giác để tính toán:

Cho tam giác \(ABC\) khi đó \(\cos A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}\)

Giải chi tiết

Hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\) , ta tìm góc giữa hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\).

Gọi \(M\), \(N\) là trung điểm các cạnh \(AD\) và \(BC\), khi đó \(SM \bot AD\) và \(SN \bot BC\) (do các tam giác \(SBC;SAD\) là các tam giác đều).

Vì \(BC//AD\)  nên  giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng \(d\) qua \(S\) và song song \(AD\), \(BC\).

Vì \(SM \bot AD\) và \(SN \bot BC\) nên \(S\) và \(D\) mà \(SM \subset \left( {SAD} \right);SN \subset \left( {SBC} \right)\) nên  góc giữa hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là góc \(\widehat {MSN}\). 

Mặt bên là các tam giác đều cạnh \(a\) nên \(SM = SN = \dfrac{{a\sqrt 3 }}{2}\), \(MN = AB = a\).

Khi đó : \(\cos \widehat {MSN} = \dfrac{{S{M^2} + S{N^2} - M{N^2}}}{{2SM.SN}} = \dfrac{{{{\left( {\dfrac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\dfrac{{a\sqrt 3 }}{2}} \right)}^2} - {a^2}}}{{2.\dfrac{{a\sqrt 3 }}{2}.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{\dfrac{{{a^2}}}{2}}}{{\dfrac{{3{a^2}}}{2}}} = \dfrac{1}{3}\).

Chú ý khi giải

Các em có thể tính \(\widehat {MSO}\)  theo tỉ số lượng giác và suy ra \(\widehat {MSN} = 2\widehat {MSO}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com