Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(SABC\) có đáy \(ABC\) là tam giác đều cạnh \(a.\) Biết \(SA \bot \left( {ABC} \right)\)

Câu hỏi số 305032:
Vận dụng

Cho hình chóp \(SABC\) có đáy \(ABC\) là tam giác đều cạnh \(a.\) Biết \(SA \bot \left( {ABC} \right)\) và \(SA = 2a.\) Mặt phẳng \(\left( P \right)\) qua \(B\) vuông góc với \(SC.\) Diện tích thiết diện của hình chóp cắt bởi mặt phẳng \(\left( P \right)\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:305032
Phương pháp giải

+) Gọi M là trung điểm của AC, chứng minh \(M \in \left( P \right)\).

+) Kẻ \(BN \bot SC\,\,\left( {N \in SC} \right)\), chứng minh \(N \in \left( P \right)\), từ đó xác định \(\left( P \right)\).

+) Chứng minh thiết diện là tam giác vuông, tính diện tích tam giác vuông đó.

Giải chi tiết

Gọi M là trung điểm của \(AC\) ta có :

\(\left\{ \begin{array}{l}BM \bot AC\\BM \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow BM \bot \left( {SAC} \right) \Rightarrow BM \bot SC\)

Trong \(\left( {SBC} \right)\) kẻ \(BN \bot SC\,\,\left( {N \in SC} \right)\) \( \Rightarrow \left( P \right) \equiv \left( {BMN} \right)\).

Ta có \(BM \bot \left( {SAC} \right) \Rightarrow BM \bot MN \Rightarrow \Delta BMN\) vuông tại B.

Tam giác \(ABC\) đều cạnh \(a \Rightarrow BM = \frac{{a\sqrt 3 }}{2}\).

Ta có \(SC \bot \left( {BMN} \right) \Rightarrow SC \bot MN\).

Xét \(\Delta CMN\) và \(\Delta CSA\) có :

\(\begin{array}{l}\angle C\,\,chung\\\angle CNM = \angle CAS = {90^0}\\ \Rightarrow \Delta CMN \sim \Delta CSA\,\,\left( {g.g} \right)\\ \Rightarrow \frac{{MN}}{{SA}} = \frac{{CM}}{{SC}} \Rightarrow MN = \frac{{SA.CM}}{{SC}} = \frac{{2a.\frac{a}{2}}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{a}{{\sqrt 5 }}\end{array}\)

Vậy \({S_{\Delta BMN}} = \frac{1}{2}BM.MN = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.\frac{a}{{\sqrt 5 }} = \frac{{{a^2}\sqrt {15} }}{{20}}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com