Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(SABCD,\) đáy \(ABCD\) là hình chữ nhật có \(AB = a,\;\;BC = 2a.\)  Mặt bên \(SAB\) là

Câu hỏi số 305033:
Vận dụng

Cho hình chóp \(SABCD,\) đáy \(ABCD\) là hình chữ nhật có \(AB = a,\;\;BC = 2a.\)  Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy \(ABCD.\) Diện tích \(S\) của mặt cầu ngoại tiếp hình chóp \(SABCD\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:305033
Phương pháp giải

+) Dựng trục của 2 mặt phẳng \(\left( {ABCD} \right)\) và \(\left( {SAB} \right)\), xác định giao điểm, chứng minh giao điểm đó là tâm mặt cầu ngoại tiếp chóp \(S.ABCD\).

+) Sử dụng định lí Pytago và các kiến thức cơ bản tính bán kính \(R\) mặt cầu ngoại tiếp chóp \(S.ABCD\), sử dụng công thức tính diện tích mặt cầu \(S = 4\pi {R^2}\).

Giải chi tiết

Gọi H là trung điểm của AB ta có \(SH \bot AB \Rightarrow SH \bot \left( {ABCD} \right)\).

Gọi \(O = AC \cap BD\), \(G\) là trọng tâm tam giác đều \(SAB\).

Qua \(O\) dựng \({d_1}//SH \Rightarrow {d_1} \bot \left( {ABCD} \right)\), qua \(G\) dựng \({d_2}//OH \Rightarrow {d_2} \bot \left( {SAB} \right)\).

Gọi \(I = {d_1} \cap {d_2}\) ta có :

\(\left\{ \begin{array}{l}I \in {d_1} \Rightarrow IA = IB = IC = ID\\I \in {d_2} \Rightarrow IA = IB = IS\end{array} \right. \Rightarrow IA = IB = IC = ID = IS\)

\( \Rightarrow I\) là tâm mặt cầu ngoại tiếp chóp \(S.ABCD\).  

Tam giác \(SAB\) đều cạnh \(a \Rightarrow SH = \frac{{a\sqrt 3 }}{2} \Rightarrow HG = \frac{1}{3}SH = \frac{{a\sqrt 3 }}{6} = OI\).

Ta có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + 4{a^2}}  = a\sqrt 5  \Rightarrow OA = \frac{{a\sqrt 5 }}{2}\).

Áp dụng định Pytago trong tam giác vuông \(OAI\) ta có: \(IA = \sqrt {I{O^2} + O{A^2}}  = \sqrt {\frac{{{a^2}}}{{12}} + \frac{{5{a^2}}}{4}}  = \frac{{2\sqrt 3 a}}{3} = R\)

Vậy \(S = 4\pi {R^2} = 4\pi \frac{{4{a^2}}}{3} = \frac{{16\pi {a^2}}}{3}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com