Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai số thực \(x;y\) thỏa mãn \(0 < x < 1 < y\). Trong các bất đẳng thức sau, có bao nhiêu

Câu hỏi số 305181:
Thông hiểu

Cho hai số thực \(x;y\) thỏa mãn \(0 < x < 1 < y\). Trong các bất đẳng thức sau, có bao nhiêu bất đẳng thức đúng?

      \(\left( 1 \right)\,{\log _x}\left( {1 + y} \right) > {\log _{\frac{1}{y}}}x\)          \(\left( 2 \right)\,{\log _y}\left( {1 + x} \right) > {\log _x}y\)       \(\left( 3 \right)\,{\log _y}x < {\log _{1 + x}}\left( {1 + y} \right)\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:305181
Phương pháp giải

Sử dụng các kiến thức sau:

+ Nếu   \(0 < a < 1\) hoặc \(0 < b < 1\) thì \({\log _a}b < 0\,\,\left( {a;b > 0} \right)\)

+ Nếu \(a > 1\) và \(b > 1\) thì \({\log _a}b > 0\)

+ Nếu \(0 < a < 1;b;c > 0\) thì \({\log _a}b < {\log _a}c \Leftrightarrow b > c\)

+ Nếu \(a > 1;b;c > 0\) thì \({\log _a}b < {\log _a}c \Leftrightarrow b < c\)

Giải chi tiết

+ Xét \(\left( 1 \right)\,{\log _x}\left( {1 + y} \right) > {\log _{\dfrac{1}{y}}}x \Leftrightarrow \,{\log _x}\left( {1 + y} \right) > {\log _{{y^{ - 1}}}}x \Leftrightarrow {\log _x}\left( {1 + y} \right) >  - {\log _y}x \Leftrightarrow {\log _x}\left( {1 + y} \right) + {\log _y}x > 0\)

Ta có \(0 < x < 1 < y \Rightarrow y + 1 > 1 \Rightarrow {\log _x}\left( {y + 1} \right) < {\log _x}1 = 0 \Rightarrow {\log _x}\left( {y + 1} \right) < 0\)

Lại có vì \(0 < x < 1 < y \Rightarrow {\log _y}x < 0\)  nên \({\log _x}\left( {1 + y} \right) + {\log _y}x < 0 \Rightarrow \left( 1 \right)\) sai

+ Xét \(\left( 2 \right)\,{\log _y}\left( {1 + x} \right) > {\log _x}y\) ta thấy \(0 < x < 1 < y \Rightarrow \left\{ \begin{array}{l}{\log _y}\left( {1 + x} \right) > 0\\{\log _x}y < 0\end{array} \right. \Rightarrow {\log _y}\left( {1 + x} \right) > {\log _x}y\) nên \(\left( 2 \right)\) đúng.

+ Xét  \(\left( 3 \right)\,{\log _y}x < {\log _{1 + x}}\left( {1 + y} \right)\) ta thấy \(0 < x < 1 < y \Rightarrow \left\{ \begin{array}{l}{\log _{1 + x}}\left( {1 + y} \right) > {\log _{1 + x}}1 = 0\\{\log _y}x < 0\end{array} \right. \Rightarrow {\log _y}x < {\log _{1 + x}}\left( {1 + y} \right)\) nên \(\left( 3 \right)\) đúng. Vậy có hai bất đẳng thức đúng.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com