Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \(M;m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \dfrac{{x +

Câu hỏi số 305250:
Vận dụng

Gọi \(M;m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \dfrac{{x + a}}{{{x^2} + 1 + 2a}}\), với \(a\) là tham số dương. Tìm tất cả các giá trị của \(a\) để \(3M + 7m = 0.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:305250
Phương pháp giải

Ta nhân chéo đưa về phương trình bậc hai ẩn \(x\) , tham số \(y.\)

Tính \(\Delta \) theo \(y\) rồi biện luận phương trình có nghiệm thì \(\Delta  \ge 0\) . Từ đó ta tìm được giá trị lớn nhất và giá trị nhỏ nhất của \(y.\)

Giải chi tiết

Ta có \(y = \dfrac{{x + a}}{{{x^2} + 1 + 2a}}\)\( \Rightarrow y\left( {{x^2} + 1 + 2a} \right) = x + a \Leftrightarrow {x^2}.y - x + y + 2ay - a = 0\) (*)

Ta có \(\Delta  = {\left( { - 1} \right)^2} - 4y\left( {y + 2ay - a} \right) =  - 4{y^2} - 8a{y^2} + 4ay + 1\)

\( =  - 4\left( {2a + 1} \right){y^2} + 4ay + 1\)

Để phương trình (*) có nghiệm thì

\(\begin{array}{l}\Delta  \ge 0 \Leftrightarrow  - 4\left( {2a + 1} \right){y^2} + 4ay + 1 \ge 0\\ \Leftrightarrow  - \left( {8a + 4} \right){y^2} - 2y + \left( {4a + 2} \right)y + 1 \ge 0\\ \Leftrightarrow  - 2y\left( {\left( {4a + 2} \right)y + 1} \right) + \left( {4a + 2} \right)y + 1 \ge 0 \Leftrightarrow \left[ {\left( {4a + 2} \right)y + 1} \right]\left( {1 - 2y} \right) \ge 0\end{array}\)

\( \Leftrightarrow \dfrac{{ - 1}}{{4a + 2}} \le y \le \dfrac{1}{2}\)  (với \(a > 0\))

Suy ra  giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y\) lần lượt là \(M = \dfrac{1}{2};m = \dfrac{{ - 1}}{{4a + 2}}\)

Từ gỉa thiết suy ra \(3M + 7m = 0 \Leftrightarrow 3.\dfrac{1}{2} + 7.\left( {\dfrac{{ - 1}}{{4a + 2}}} \right) = 0 \Rightarrow  - 7 + 3\left( {2a + 1} \right) = 0 \Leftrightarrow a = \dfrac{2}{3}\left( {TM} \right)\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com