Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) =

Câu hỏi số 307400:
Thông hiểu

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = \left( {x + 2} \right){\left( {x - 1} \right)^{2018}}{\left( {x - 2} \right)^{2019}}\) . Khẳng định nào sau đây là đúng ?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:307400
Phương pháp giải

+) Số điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\)  là số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0.\)

+) Hàm số \(y = f\left( x \right)\) đồng biến \( \Leftrightarrow f'\left( x \right) \ge 0,\) bằng 0 tại hữu hạn điểm.

+) Hàm số \(y = f\left( x \right)\) nghịch biến \( \Leftrightarrow f'\left( x \right) \le 0,\) bằng 0 tại hữu hạn điểm. 

Giải chi tiết

Ta có: \(f'\left( x \right) = 0 \Leftrightarrow \left( {x + 2} \right){\left( {x - 1} \right)^{2018}}{\left( {x - 2} \right)^{2019}} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\x = 1\\x = 2\end{array} \right.\)

Trong đó \(x =  - 2,\;\;x = 2\) là hai nghiệm bội lẻ, \(x = 1\) là nghiệm bội chẵn

\( \Rightarrow x =  - 2;\;\;x = 2\) là hai điểm cực trị của hàm số, \(x = 1\) không là điểm cực trị.

\( \Rightarrow \) đáp án A sai.

Ta có: \(f'\left( x \right) \ge 0 \Leftrightarrow \left( {x + 2} \right){\left( {x - 1} \right)^{2018}}{\left( {x - 2} \right)^{2019}} \ge 0\)

\( \Leftrightarrow \left( {x + 2} \right){\left( {x - 2} \right)^{2019}} \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le  - 2\end{array} \right.\)

\( \Rightarrow \) hàm số đồng biến trên \(\left( { - \infty ; - 2} \right)\) và \(\left( {2; + \infty } \right),\)  hàm số nghịch biến trên \(\left( { - 2;\;2} \right).\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com