Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = {x^3} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2\) . Tìm tất

Câu hỏi số 307960:
Vận dụng cao

Cho hàm số \(f\left( x \right) = {x^3} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2\) . Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:307960
Phương pháp giải

Để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị \( \Rightarrow \) Hàm số \(y = f\left( x \right)\) có 2 cực trị dương phân biệt.

Giải chi tiết

\(f\left( x \right) = {x^3} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2 \Rightarrow f'\left( x \right) = 3{x^2} - 2\left( {2m - 1} \right)x + 2 - m\).

Để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị \( \Rightarrow \) Hàm số \(y = f\left( x \right)\) có 2 cực trị dương phân biệt.

\( \Rightarrow \) Phương trình \(f'\left( x \right) = 0\) có 2 nghiệm dương phân biệt.

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {\left( {2m - 1} \right)^2} - 3\left( {2 - m} \right) > 0\\S = \frac{{2\left( {2m - 1} \right)}}{3} > 0\\P = \frac{{2 - m}}{3} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} - m - 5 > 0\\m > \frac{1}{2}\\m < 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > \frac{5}{4}\\m <  - 1\end{array} \right.\\\frac{1}{2} < m < 2\end{array} \right. \Leftrightarrow \frac{5}{4} < m < 2\) .

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com