Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác đều \(ABC\) có cạnh bằng \(3a\) . Điểm \(H\) thuộc cạnh \(AC\) với \(HC = a.\) Dựng

Câu hỏi số 307977:
Vận dụng

Cho tam giác đều \(ABC\) có cạnh bằng \(3a\) . Điểm \(H\) thuộc cạnh \(AC\) với \(HC = a.\) Dựng đoạn thẳng \(SH\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) với \(SH = 2a.\) Khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAB} \right)\) bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:307977
Phương pháp giải

+) So sánh \(d\left( {C;\left( {SAB} \right)} \right)\) và \(d\left( {H;\left( {SAB} \right)} \right)\).

+) Dựng và tính khoảng cách \(d\left( {H;\left( {SAB} \right)} \right)\).

Giải chi tiết

                               

Gọi \(D\) là trung điểm của \(AC\) \( \Rightarrow CD \bot AB\)

Kẻ \(HM//CD\,\,\left( {M \in AB} \right) \Rightarrow HM \bot AB\).

Ta có \(\left\{ \begin{array}{l}HM \bot AB\\SH \bot AB\end{array} \right. \Rightarrow AB \bot \left( {SHM} \right)\).

Trong \(\left( {SHM} \right)\) kẻ \(HK \bot SM\,\,\left( {K \in SM} \right)\) ta có :

\(\left\{ \begin{array}{l}HK \bot SM\\HK \bot AB\,\,\left( {AB \bot \left( {SHM} \right)} \right)\end{array} \right. \Rightarrow HK \bot \left( {SAB} \right) \Rightarrow d\left( {H;\left( {SAB} \right)} \right) = HK\).

Ta có: \(CH \cap \left( {SAB} \right) = A \Rightarrow \frac{{d\left( {C;\left( {SAB} \right)} \right)}}{{d\left( {H;\left( {SAB} \right)} \right)}} = \frac{{CA}}{{HA}} = \frac{3}{2} \Rightarrow d\left( {C;\left( {SAB} \right)} \right) = \frac{3}{2}d\left( {H;\left( {SAB} \right)} \right) = \frac{3}{2}HK\).

Tam giác \(ABC\) đều cạnh \(3a \Rightarrow CD = \frac{{3a\sqrt 3 }}{2}\).

Áp dụng định lí Ta-lét ta có: \(\frac{{HM}}{{CD}} = \frac{{AH}}{{AC}} = \frac{2}{3} \Rightarrow HM = \frac{2}{3}.\frac{{3a\sqrt 3 }}{2} = a\sqrt 3 \).

Áp dụng hệ thức lượng trong tam giác vuông \(SHM\) ta có : \(HK = \frac{{SH.HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \frac{{2a.a\sqrt 3 }}{{\sqrt {4{a^2} + 3{a^2}} }} = \frac{{2a\sqrt {21} }}{7}\)

Vậy \(d\left( {C;\left( {SAB} \right)} \right) = \frac{3}{2}.\frac{{2a\sqrt {21} }}{7} = \frac{{3a\sqrt {21} }}{7}\).

Chọn B.    

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com