Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left(

Câu hỏi số 308337:
Thông hiểu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {{x^2} - 1} \right)^3},\,\,\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là :

Đáp án đúng là: B

Quảng cáo

Câu hỏi:308337
Phương pháp giải

Số điểm cực trị của hàm số \(y = f\left( x \right)\) là số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0\).

Giải chi tiết

\(\begin{array}{l}f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {{x^2} - 1} \right)^3} = 0 \Leftrightarrow {x^2}\left( {x - 1} \right){\left( {x - 1} \right)^3}{\left( {x + 1} \right)^3} = {x^2}{\left( {x - 1} \right)^4}{\left( {x + 1} \right)^3}\\f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x =  - 1\end{array} \right.\end{array}\)

Tuy nhiên \(x = 0\) là nghiệm bội 2, \(x = 1\) là nghiệm bội 4 của phương trình \(f'\left( x \right) = 0\), do đó chúng không là cực trị của hàm số. Vậy hàm số có duy nhất 1 điểm cực trị \(x =  - 1\).

Chú ý khi giải

Chú ý: HS nên phân tích đa thức \(f'\left( x \right)\) thành nhân tử triệt để trước khi xác định nghiệm, tránh sai lầm khi kết luận \(x = 1\) cũng là cực trị của hàm số.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com