Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp đều \(S.ABCD\) có đáy là hình vuông \(ABCD\) tâm \(O\) cạnh \(2a\), cạnh bên \(SA =

Câu hỏi số 308340:
Thông hiểu

Cho hình chóp đều \(S.ABCD\) có đáy là hình vuông \(ABCD\) tâm \(O\) cạnh \(2a\), cạnh bên \(SA = a\sqrt 5 \). Khoảng cách giữa \(BD\) và \(SC\) là :

Đáp án đúng là: B

Quảng cáo

Câu hỏi:308340
Phương pháp giải

+) Dựng đoạn vuông góc chung của \(BD\) và \(SC\).

+) Áp dụng hệ thức lượng trong tam giác vuông tính độ dài đường vuông góc chung.

Giải chi tiết

 

Vì chóp \(S.ABCD\) đều \( \Rightarrow SO \bot \left( {ABCD} \right)\).

Trong \(\left( {SOC} \right)\) kẻ \(OH \bot SC\,\,\left( {H \in SC} \right)\).

Ta có : \(\left\{ \begin{array}{l}BD \bot AC\\BD \bot SO\end{array} \right. \Rightarrow BD \bot \left( {SOC} \right) \Rightarrow OH \bot BD\)

\( \Rightarrow OH\) là đoạn vuông góc chung của \(BD\) và \(SC\)\( \Rightarrow d\left( {BD;SC} \right) = OH\).

 \(ABCD\) là hình vuông cạnh \(2a \Rightarrow OC = \dfrac{{2a\sqrt 2 }}{2} = a\sqrt 2 \)

\( \Rightarrow SO = \sqrt {S{C^2} - O{C^2}}  = \sqrt {5{a^2} - 2{a^2}}  = a\sqrt 3 \).

Áp dụng hệ thức lượng trong tam giác vuông \(SOC\) : \(OH = \dfrac{{SO.OC}}{{SC}} = \dfrac{{a\sqrt 3 .a\sqrt 2 }}{{a\sqrt 5 }} = \dfrac{{a\sqrt {30} }}{5}\).

Vậy \(d\left( {BD;SC} \right) = \dfrac{{a\sqrt {30} }}{5}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com