Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hình chóp tam giác đều \(S.ABC\) có cạnh đáy là \(a\) và mặt bên tạo với đáy góc \({45^0}\).

Câu hỏi số 310033:
Thông hiểu

Hình chóp tam giác đều \(S.ABC\) có cạnh đáy là \(a\) và mặt bên tạo với đáy góc \({45^0}\). Tính theo \(a\) thể tích khối chóp \(S.ABC\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:310033
Phương pháp giải

Tính diện tích đáy và chiều cao rồi áp dụng công thức \(V = \dfrac{1}{3}Sh\) tính thể tích.

Giải chi tiết

Gọi \(H\) là tâm đường tròn ngoại tiếp tam giác đều \(ABC\) suy ra \(SH\) là đường cao.

Góc giữa mặt bên và đáy là góc giữa \(SM\) và \(AM\) vơí \(M\) là trung điểm của \(BC\).

Tam giác \(ABC\) đều cạnh \(a\) nên \(AM = \dfrac{{a\sqrt 3 }}{2} \Rightarrow MH = \dfrac{1}{3}AM = \dfrac{{a\sqrt 3 }}{6}\)

Tam giác vuông \(SHM\) có \(MH = \dfrac{{a\sqrt 3 }}{6},\,\,\widehat {SMH} = {45^0}\) nên \(SH = HM = \dfrac{{a\sqrt 3 }}{6}\).

Vậy thể tích \({V_{S.ABC}} = \dfrac{1}{3}{S_{ABC}}.SH = \dfrac{1}{3}.\dfrac{{{a^2}\sqrt 3 }}{4}.\dfrac{{a\sqrt 3 }}{6} = \dfrac{{{a^3}}}{{24}}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com