Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho lăng trụ đứng \(ABC.A'B'C'\) có tất cả các cạnh đều bằng \(2a\). Khoảng cách giữa hai

Câu hỏi số 312401:
Vận dụng

Cho lăng trụ đứng \(ABC.A'B'C'\) có tất cả các cạnh đều bằng \(2a\). Khoảng cách giữa hai đường thẳng \(BC\) và \(AA'\) bằng 

Đáp án đúng là: B

Quảng cáo

Câu hỏi:312401
Phương pháp giải

\(d\left( {a;b} \right) = d\left( {a;\left( P \right)} \right)\,\,\left( {a//\left( P \right) \supset b} \right) = d\left( {M;\left( P \right)} \right)\,\,\left( {M \in a} \right)\).

Giải chi tiết

Vì \(AA'//BB' \Rightarrow AA'//\left( {BCC'B'} \right) \supset BC\)

\( \Rightarrow d\left( {BC;AA'} \right) = d\left( {AA';\left( {BCC'B'} \right)} \right) = d\left( {A;\left( {BCC'B'} \right)} \right)\) 

Gọi \(H\) là trung điểm của \(BC\) ta có:

\(\left\{ \begin{array}{l}AH \bot BC\\AH \bot BB'\,\,\left( {BB' \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow AH \bot \left( {BCC'B'} \right)\)

\( \Rightarrow d\left( {A;\left( {BCC'B'} \right)} \right) = AH\).

Tam giác \(ABC\) đều cạnh \(2a \Rightarrow AH = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 \).

Vậy \(d\left( {BC;AA'} \right) = a\sqrt 3 \).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com