Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Tìm các giá trị thực của tham số m để hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + ({m^2} - 4)x + 3\)

Câu hỏi số 315503:
Thông hiểu

Tìm các giá trị thực của tham số m để hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + ({m^2} - 4)x + 3\) đạt cực đại tại \(x = 3\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:315503
Phương pháp giải

Hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d,\,\,\left( {a \ne 0} \right)\) đạt cực đại tại x = 3

Giải chi tiết

\(y = f\left( x \right) = \dfrac{1}{3}{x^3} - m{x^2} + ({m^2} - 4)x + 3 \Rightarrow f'\left( x \right) = {x^2} - 2mx + {m^2} - 4\),

Hàm số bậc ba \(y = \dfrac{1}{3}{x^3} - m{x^2} + ({m^2} - 4)x + 3\) đạt cực đại tại 

\( \Leftrightarrow \left\{ \begin{array}{l}9 - 6m + {m^2} - 4 = 0\\6 - 2m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 6m + 5 = 0\\m > 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\\m > 3\end{array} \right. \Leftrightarrow m = 5\)

Vậy, \(m = 5\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com